celduc ${ }^{\circ}$

 relais
PRODUCT GUIDE

www.celduc-relais.com

MAGNETIC SENSORS

REED RELAYS \& SWITCHES

MADE IN
FRANCE

DEAR CUSTOMERS AND READERS,

It is with a great feeling of pride that we are presenting today the sixth version of our "selection guide" to you. We are proud of the number and the great variety of new customers we were able to convince to join us in the last years, and also proud of the several innovating products designed and developed by our R\&D teams, always eager to answer your needs.

Record financial results, extension works, investments in IT, production machines upgrading, opening of our subsidiary in China... : 2017 and 2018 have been years of exceptional enterprise for celduc® relais, which is continuing on an already great course.
We greatly care for the trust you have put in us and will always strive to continue answering your needs and requirements.
celduc $®$ relais has gained a thorough knowledge of the market for over 50 years and controls its products entire manufacturing process, from studies to sales. It is nowadays an unquestionable expert in its 3 strategic activity fields, which are:
S=Solid State Relays \& Contactors
$P=$ Magnetic Proximity Sensors
$R=$ Reed Relays \& Switches
Don't miss out on our new relays and 3-phase solid-state relays "cel3pac" and "sightpac", but also on our autonomous smart sensors loT and our autonomous magnetic safety sensors with built in security module..
It is clear that communication and safety are the great challenges of today and those of tomorrow even more.

This "selection guide" is available in 7 languages, which proves if needed, how dynamic we are on export markets. Indeed, over 70 of our production is being exported in the world, under our celduc® brand or through our OEM contracts. celduc® relais is thus present in over 60 countries.

We also would like to invite you to discover our new internet website: www.e-catalogue.celduc-relais.com, where you can download all our technical data sheets and sales brochures, but also make good use of our search filters to find the product (s) which will fully meet your requirements.

We wish you a happy discovery of this selection guide. Looking forward to talking to you soon.

OUR

 STRENGTHS
"

ANALYSIS OF CUSTOMERS' REQUIREMENTS

celduc®relais is the indisputable global expert and preferred choice of companies all over the world.

CONSTANT PRODUCT DEVELOPMENT

our experienced R \& D engineers constantly work on developing 10 to 15% of new products each year.

CONTROL OF THE COMPLETE CHAIN

design, development, production, testing and marketing.

A WORLDWIDE PRESENCE IN MORE THAN 60 COUNTRIES

for a better understanding of customer's needs and offering of solutions which fully meet their requirements.

IN COMPLIANCE WITH THE MAJOR INTERNATIONAL STANDARDS

our products are designed, tested and manufactured in accordance with the strictest international standards.

celduc® relais' products

SOLID STATE RELAYS

Commonly known as SSR, it represents 70% of the production of celduc® relais.
These innovative and highly efficient components are used to control all types of loads in many industries. The three major application areas are industrial heating and temperature control, lighting control, and motor control. The advantages Solid State Relays (SSR) have compared to Electro Mechanical Relays (EMR) are well-known (see page 6). celduc® relay the sole solid state relay technology made in France for more than 50 years !

MAGNETIC PROXIMITY SENSORS

 PAGES $39 \rightarrow 54$

Used for monitoring or controlling level, clearance, movement, position and rpm recording, the sky is the limit for these versatile sensors. These sensors are used everywhere in consumer goods or industrial sectors like automotive, aircraft or telecommunications. They are also extensively used in many automation applications in the manufacturing sector.
"REED" RELAYS
\& SWITCHES

PAGES
$55 \rightarrow 56$

Our Reed switches are used in our own magnetic proximity sensors \& reed relays. They have proved to last for more than 50 years. The range meets the demands of an increasing number of new applications thanks to their ease of operation, compact size and reliability.

SOLID STATE RELAYS

MAIN APPLICATIONS

EVERY DAY NEW APPLICATIONS CALLING FOR RELIABILITY, SILENT SWITCHING AND LONG LIFE TIME UTILIZE OUR HIGHLY INNOVATIVE SOLID STATE RELAYS.
here are some examples :

HEATING

Plastic injection molding, Furnaces, Power supply distribution systems, Air conditioning, Textile, Home heating, Infrared heating, Drying, Thermoforming, Etc.

MOTOR STARTING

Pumps, Compressors, Plastic injection molding, Conveyors, Fans, Etc.

LIGHTING

Public lighting, Cinema, Theatre lamps, Airport runway lamps, Road lighting, Etc.

CONTROL

PLC interface, Heating element control, Solenoid valves, Contactor Coils, Optocoupling of sensors

MISCELLANEOUS

Transformer starting, Power factor corrector, Uninterrupted power supplies, Energy source switching, Capacitors control

IN COMPLIANCE WITH THE STANDARDS SPECIFIC TO EACH INDUSTRY

IN MANY AREAS, THE COMPONENTS USED IN THE EQUIPMENT MUST MEET VERY STRICT REQUIREMENTS THAT ARE SPECIFIC TO EACH INDUSTRY.

All of our relays okpac® SO (as well as SC relays), celpac® 2G SU/ SA (including the current sense module ESUC) but also the 2-phase SOB and 3-phase SGT comply with the European standard EN 61373 for railways : shocks and vibrations tests on relay.
Regarding the standards about Fire behavior and fumes NF F16-101, NF F16-102 and EN 45545 calling for the EN 60695-2-10/11/12 (Glow Wire tests (GWFI GWIT), blue and black plastic covers and encapsulating resin of SO and SU/SA relays are classified. Our products are also compliant with the EN 50155 standard which applies to all electronic equipment for control, regulation, protection and power supply used on rolling stock.

Some of our products fulfil the requirements according to EN 60601-1 (VDE 0750) for medical applications

SOLID STATE RELAYS

STANDARDS

QUALITY IS OF PARAMOUNT IMPORTANCE AND MAINTAINED AT ALL TIMES, AIDED BY OUR OWN SPECIALLY DEVELOPED IN HOUSE TESTING EQUIPMENT. OUR PRODUCTS ARE MANUFACTURED IN ACCORDANCE WITH THE MAJOR INTERNATIONAL STANDARDS

- The solid state relays and contactors made by celduc® relais are manufactured in compliance with major international standards :
- IEC/EN60947-4-3 for the other loads
- IEC/EN60947-4-2 for motor control
- IEC 62314
- American and Canadian (UL, cUL, CSA)
- IEC/EN 60950 - VDE0805
- IEC60335-1 - VDE0700-1

Our products also meet the major European directive regarding the CE marking.

- In the UL508A standard, the estimated short-circuit current is called the SCCR: Short Circuit Current Rating. Since 1 April 2015, our solid state relays have successfully obtained the UL SCCR 100kA approval. In fact, some customers request a supplement to the approval with a SCCR higher than 5kA according to a UL 508A appendix called "supplement SB".
- Some of our products fulfil the requirements for KOSHA (S-MARK) and for EAC (Russia-CIS).
- The manufacturing process of our relays complies with the ISO9001 requirements version 2008. We incorporate highly reliable components with a very high electromagnetic interference level which give to our products the highest life-time one can find one the market.

celduc $®$ relais and SPECIAL CUSTOMER PRODUCTS

CELDUC® RELAIS DESIGN SPECIFIC PRODUCTS ACCORDING TO THE CUSTOMERS SPECIFICATIONS AND ADAPT PRODUCTS TO THE CUSTOMERS NEEDS.

Special development composed of SU SSRs and ESUC modules to control 9 heating elements with partial load break detection. This system includes all protections.

Motor reverser

with 2 electronic cards included 5 SSRs.

Solid state contactor for 3 phase motor.
Dry contact control Spring terminals.
A TEAM OF EXPERTS
AT YOUR SERVICE

Solid State Relays with IO-Link communication Because communication is a one of the great challenges of today, and an even bigger challenge of tomorrow!

SELECTION CRITERIA

Function	ON/OFF RELAY										DIAGNOSIS / TEMP. REGULATOR 1 pole - Single Phase	
No. of poles	1 pole - Single Phase			1 pole EMC optimised	2 poles Two Phase		3 poles - Three Phase			4 poles Screwin		
Assembly type	Printed circuit board	DIN rail	Screw-in	Screw-in	DIN rail	Screwin	Printed circuit board	DIN rail	Screwin		DIN rail	Screwin
HEATING ELEMENTS: No inrush current												
AC-51	$\begin{aligned} & \text { SLA/SPA/STA } \\ & \text { SKA/SKB } \\ & \text { SKL/SKH } \end{aligned}$	XKA SAL9/SAM9 SUL9/SUM9	$\begin{aligned} & \text { SO9/SOL9 } \\ & \text { SA9/SU9 } \end{aligned}$	$\begin{aligned} & \text { SCFL } \\ & \text { SON } \end{aligned}$	XKM	SOB9	SHT	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$	SCQ	$\begin{aligned} & \text { SILD } \\ & \text { SUL+ESUC } \\ & \text { SUL+ } \\ & \text { ECOM } \end{aligned}$	$\begin{aligned} & \text { SU+ } \\ & \text { ESUC } \\ & \text { SU+ } \\ & \text { ECOM } \end{aligned}$
DC-1			SOM/SCM/ SCI/SDI									

INCANDESCENT LAMPS - INFRARED LIGHTS - INDICATOR LIGHTS: strong inrush currents

AC-55b	SKA SKL/SKH	XKA SAL8/SAM8 SUL8/SUM8	$\begin{aligned} & \text { SO8 } \\ & \text { SA8/SU8 } \end{aligned}$	$\begin{aligned} & \text { SCFL } \\ & \text { SON } \end{aligned}$	SOB8	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$
DC-6	$\begin{aligned} & \text { SLD/SPD/STD } \\ & \text { SKD } \end{aligned}$	$\begin{aligned} & \text { SLD/SPD/STD } \\ & \text { XKD } \end{aligned}$	$\begin{aligned} & \text { SCM/SCI/SDI } \\ & \text { SOM } \end{aligned}$				

DISCHARGE LAMPS: strong inrush currents, overvoltages at the turn off

| AC-55a | SKA/SKL/SKH | XKA/SAx8/
 SU8 | SO8/SA8/SU8 | SOB8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MOTORS: strong start currents

AC-53	SLA/SPA/STA SKL/SKH	XKL/XKH SAx8/SUx8/ SUx7	$\begin{aligned} & \text { SO8/SA8/SU8 } \\ & \text { SO7/SU7 } \end{aligned}$	$\begin{aligned} & \text { SCFL } \\ & \text { SON } \end{aligned}$	$\begin{aligned} & \text { SOB7 } \\ & \text { SOB8 } \end{aligned}$	$\begin{aligned} & \text { SMT8 } \\ & \text { SGT8 } \end{aligned}$	$\begin{aligned} & \text { SMT8 } \\ & \text { SGT8 } \end{aligned}$
$\begin{aligned} & \text { DC-3/ } \\ & \text { DC-5 } \end{aligned}$							

CONTACTORS - SOLENOID VALVES - ELECTROMAGNETS: high inductive loads

AC-14 <72 VA	SLA/SPA/STA SKA	SLA/SPA/STA XKA	SO8/SA8/SU8 SO7/SU7; SF
AC-15 >72 VA	SLA/SPA/STA SKA/SKL	SLA/SPA/STA XKA/XKL	SO8/SA8/SU8 SO7/SU7; SF
DC-13	SLD/SPD/STD SKD	SLD/SPD/STD XKD	SCC SCM/SOM
DC-14	SLD/SPD/STD SKD	SLD/SPD/STD XKD	SCC SCM/SOM

PLC INPUTS/OUTPUTS: interfaces, low current

| AC input | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DC input | | | | | |
| AC output | SLA/SPA/STA
 SKA | SLA/SPA/STA
 XKA | SF | XKM | |
| DC output | SLD/SPD/STD
 SKD | SLD/SPD/STD
 XKD | | | |

TRANSFORMERS: very strong magnetising currents, overvoltages

AC-56a	SKL/SKH	XKL/XKH	SO7/SOP

CAPACITY (Power factor corrections, Power supplies): strong inrush current

CONTENTS

SOME TECHNICAL REMINDERS 6 to 7
INTERFACE RELAYS to 9
-SLA / SLD / SPA / SPD 8
-XK - DIN-rail mounting 9
PCB RELAYS 10 to 11
-SKA / SKB / SKL 10
-SKH - with integrated heatsink 11
-SN8 - ultra-miniature and compact package 11
-SHT - three-phase solid state relays 11
SINGLE PHASE SOLID STATE RELAYS 12 to 23
-SO7 - okpac® range - random 13
-SO8 - okpac® range - zero-cross - for most types of loads 13
-SO9 - okpac® range - zero-cross - for resistive loads AC-51 14
-SOL - flatpac® range - low profile 14
-SON - EMC optimized 14
-SOP - Starting transformer 15
-SOR - with removable input connector - spring terminals 15
-SC7 / SC8 / SC9 - Previous generation 15
-SA / SAL / SAM - celpac® range - with screw connection on inputs 16-17-SU / SUL / SUM - celpac® range - with pluggable connector on inputs 18-ESUC - current monitoring module19
-ECOM - temperature controller, current monitorand communication interface19
-SILD / SOD / SOI - power SSRs with diagnostics 20-21
-SF - miniatures relays - with FASTON or PCB terminals 22
-SCF - for resistive loads AC-51 - with FASTON terminals 22
-SCFL - EMC optimized - with FASTON terminals 22
-SP7/SP8 - for most types of loads - with FASTON terminals 23
-SCQ - four-leg solid state relays 23
-ST6 - flashing relays 23
TWO-PHASE SOLID STATE RELAYS 24 to 25
-SOB5 - with FASTON terminals 24
-SOB6 - double input with connector CE100F ITWPANCON typeor similar24
-SOB7 - random 24
-SOB8 / SOB9 - zero-cross 25
-SOBR - with "push-in" style spring power connectors 25
-Accessories for SOB - connectors 25
THREE-PHASE SOLID STATE RELAYS 26 to 28
-SMB - sightpac® 45mm - 2 leg three-phase SSRs 27
-SMT - sightpac® 45 mm 27
-SGB - cel3pac® - 2 leg three-phase SSRs 27
-SGT - cel3pac® 28
RELAIS STATIQUES POUR CONTRÔLE MOTEUR 29 to 30
-SMR / SG9 / SV9 / SW9 - AC reversing switches 29
-XKRD / SGRD - DC reversing switches 29
-SYMC - AC single phase softstarter 30
-SMCV/SMCW - AC three-phase softstarter 30
CONTROLLERS 31 to 35
-Which control mode to choose? 31
-SG4 / SO4 / SIL4 / SIM4 - phase angle controllers 32-33
-SO3 - burst control mode 33
-Multizones power controller 33
-SG5 - full wave pulse controllers 34
-SWG5 - single phase power controllers 34
-SWG8 - three-phase power controllers 34
-SGTA / SVTA - three-phase proportional controllers 35
DC SOLID STATE RELAYS 36 to 37
-MOSFET Technology 36
-BIPOLAR Technology 37
-IGBT Technology 37
HEATSINKS \& ACCESSORIES 38

SOLID STATE RELAYS

WHAT IS A SOLID STATE RELAY / CONTACTOR?

Solid state relays are switching devices made with electronic components. We use the word "relays" by analogy with electromechanical relays which have galvanic isolation of the control circuit and the switched circuit. "Solid state" refers to the fact that these devices do not have moving parts.

A solid state relay switches a power (AC or DC) to a load and provides electrical insulation between the control circuit and the load circuit. This technology is in competition with or in addition to electromechanical relays and other switching technologies such as mercury switches and relays.
Composition of a solid state relay:

ADVANTAGES OF SOLID STATE SWITCHING

LONG LIFE : solid state relays do not have moving mechanical parts subject to wear and tear or deformation. When used well, a solid state relay has a lifespan 200 times longer than that of an electromechanical relay (EMR).

VERY LOW ENERGY CONSUMPTION: a low drive power will allow solid state contactors and relays to switch strong power loads.

SILENT OPERATION: this technology does not generate acoustic noise while the outputs are changing state. This is a very important advantage for domestic and medical uses.

SHOCK AND VIBRATION RESISTANCE: No risk of accidental switching with solid state technology.

VERY HIGH SWITCHING FREQUENCY.

allowing a very high degree of accuracy for regulation (temperature, etc.)

OTHER TYPES OF CONTROLS (precise choice of the moment of switching) and possible diagnostic functions.

ZERO-CROSS RELAY OR RANDOM RELAY?

In the case of a ZERO VOLTAGE CONTROL (OR ZERO-CROSS RELAY), power switching takes place only at the beginning of the alternation after the control has been applied. In fact, switching the power component is only permitted in the area around the zero crossing.
In the case of resistive or capacitive loads, it is preferable to use zero-cross relays which in this way limit the di/ dt , disturbances on the network and increase the lifetime of the load and the relay.
 CONTROL (OR RANDOM RELAY), power switching takes place as soon as the control voltage has been applied (turn on time less than $100 \mu \mathrm{~s}$). This type of control is more suited to all high INDUCTIVE loads because of the phase difference between current and voltage.
It is also suited to systems requiring an immediate switching.

REMINDERS : Zero-cross all loads: SO8, SA8, SMT8, Zero-cross resistive loads: SO9, SUL9, SGT9, Random: SO7, SUL7, SGT7,

SOLID STATE RELAYS

THYRISTOR RATING VS SWITCHING CURRENT

The switching components of solid state relays for alternating currents are thyristors. The ratings of our power components are specified in this catalogue. However, solid state relays must be mounted on heatsinks in order to obtain nominal performance. "Thyristor rating", which is an indication of the size of the power component, must not be confused with "switchable current" which depends on the construction and use of the relay or contactor. To match the switchable current by the relay and your application, you must refer to the tables and
thermal curves in our technical datasheets for products that are not equipped as standard with heatsinks.

Our solid state relays are fitted with back-to-back thyristors and use 4th generation TMS ${ }^{2}$ technology with a very high life expectancy compared to themajority of products on the market (application note on request).

VOLTAGE PROTECTION

Strong dv/dts may appear at the solid state relay terminals. These can also be generated by mains interference or by the zero-cross current turn-off on inductive load. In relays adapted to most loads, celduc®relay uses high immunity components and sometimes an RC protection network.

CURRENT PROTECTION

\rightarrow BY FUSE: fuses, notably ultra-fast fuses for smaller ratings, must be used to protect solid state relays against short-circuits of the load. The $I^{2} t$ value of the fuse must be less than half of the $I^{2} t$ value of the relay. \rightarrow BY CIRCUIT BREAKER: this method of protection can be adapted to solid state relays with a
1^{2} t value > $5000 \mathrm{~A}^{2} \mathrm{~s}$.
(technical note on request).

RELAY COOLING / HEATSINK

Solid state relays have some energy losses in the form of heat. This heat must be dissipated so that the junction temperature (at the core of the power element) does not exceed the specified values : $125^{\circ} \mathrm{C}$ or $150^{\circ} \mathrm{C}$ (value dependent on the power components).

Heatsink must be selected so that the junction temperature isn't exceeded at the design current and ambient temperature. The determination of the heatsink can be done either by calculation or directly from the graphs provided by celduc® relay on the technical data sheets
 available on the website www.e-catalogue.celduc-relais.com

INTERFACE RELAYS

The SLA / SLD solid state relays are 100\% compatible with 5 mm pitch electromechanical relays. They can be soldered direct to PCBs or plugged into all din rail mountable bases. Every type of loads can be switched and those relays can withstand high current peaks that can be produced by loads such as electro valves, engines, coils, indicator, etc. The switching power is 2A/280VAC for SLA and 2.5A/60VDC or 4A/24VDC for SLD relays.

	Product reference	Switching current	Switching voltage	Control voltage	Protec. / Specifications
	SLA03220	2A	12-280VAC	18-32VDC	RC
\bigcirc	SLA03220L	2A	12-280VAC	18-32VDC	$\frac{R C}{\text { VC }}$
	SLD01205	4A	0-32VDC	$3-10 \mathrm{VDC}$	
	SLD01210	2.5A	0-60VDC	$3-10 \mathrm{VDC}$	
O	SLD02205	4A	0-32VDC	7-20VDC	Transil
	SLD03205	4A	$0-32 \mathrm{VDC}$	18-32VDC	
	SLD03210	2.5A	0-60VDC	18-32VDC	

Other miniature solid state relay options are available on request.

ACCESSORY
Product reference ESD01000

- Dim. $28 \times 5 \times 15 \mathrm{~mm}$

SP-ST
\rightarrow Standard

Switching current	Switching voltage
4A	$12-275$ VAC
4A	$12-275$ VAC
2A	$12-275$ VAC

Control voltage
$4-16$ VDC
12-30VDC / 15-30VAC
12-30VDC / 15-30VAC

Protec.
VDR

SPA / SPD
AC and DC from 1 to 5A, protection by VDR or built in Transil, available in $15,7 \mathrm{~mm}$ (ST Series) and $25,4 \mathrm{~mm}$ (SP Series).

SPD03505	$5 A$	$0-30 V D C$	$12-30 V D C$	
SPD07505	$5 A$	$0-30 V D C$	$12-30 V D C / 15-30 V A C$	
STD03205	$2.5 A$	$0-30 V D C$	$12-30 V D C$	Transil
STD03505	$5 A$	$0-30 V D C$	$12-30 V D C$	
STD03510	$5 A$	$0-68 V D C$	$12-30 V D C$	
STD07205	$2.5 A$	$0-30 V D C$	$12-30 V D C / 15-30 V A C$	

Our STD and SPD modules can be modified, on request, with an output voltage of 100VDC. Other control voltages are available on request.

SP/ST base for DIN rail for one relay

XK
\rightarrow DIN-rail mounting

Interface relays to control loads such as resistors, indicators, solenoids, transformers, motors, power contactor coils. These DIN-rail mounted products are available with AC and DC output options. They can also be supplied as dedicated motor control variants such as 2 and 3 phase switching and motor rotation reversal. All are fitted with LED indicators.

	Product reference	Switching current	Switching voltage	Control voltage	Protec.	Specifications
	XKA20420	5A	12-275VAC	6-30VDC	VDR	
	XKA20420D	5A	12-275VAC	6-30VDC	VDR	
	XKA20420R	5A	12-275VAC	6-30VDC	VDR	
0	XKA70420	5A	12-275VAC	15-30VAC/DC	VDR	1 pole AC zero-cross output
4	XKA70440	5A	12-440VAC	12-30VAC/8.5DC	VDR	
	XKA90440	5A	12-440VAC	150-240VAC/DC	VDR	
	XKH20120	10A	12-280VAC	10-32VDC		
	XKA20421	5A	12-275VAC	$5-30 \mathrm{VDC}$	VDR	1 pole AC random output
	XKD10120	1A	2-220VDC	5-30VDC	diode	
	XKD10306	3A	2-60VDC	$5-30 \mathrm{VDC}$	diode	
0	XKD11306D	3A	2-60VDC	$5-30 \mathrm{VDC}$	diode	1 pole DC output
-	XKD70306	3A	2-60VDC	10-30VAC/DC	diode	
	XKD90306	3A	2-60VDC	90-240VAC	diode	
	XKLD31006	10A	12-36VDC	10-30VDC	diode	DC output - MOSFET technology
Δ						
	Suffix D: removable terminals. Suffix R: removable spring terminals.					

XKLD0020 has all protections included and is designed for inductive loads with high switching frequency :

\rightarrow Diagnostic status output (potential free)
\rightarrow Control visualization by green LED
\rightarrow Output DC visualization by red LED
\rightarrow Built-in clamping voltage
\rightarrow Built-in free wheel diode
\rightarrow This product also includes a fuse on board to protect the installation.

	Product reference	Switching current	Switching voltage	Control voltage	Protec.	Specifications
O	XKLD0020	4A	24-96VDC	18-32VDC	VDR+diode	1 pole DC output Diag. Output 1-32VDC 100mA

XKH

- Dim. $25 \times 76.4 \times 65 \mathrm{~mm}$ with integrated heatsink
- Dim. $12.2 \times 76.4 \times 53 \mathrm{~mm}$ or
- Dim. $17.2 \times 76.4 \times 53 \mathrm{~mm}$ depending on models

- Dim. $36 \times 78 \times 61 \mathrm{~mm}$

Product
reference
XKM22440
XKR24440
XKRD30506

Switching current
$5 A C-51 / 2.5 A C-53$
$5 A C-51 / 2.5 A C-53$
$5 A-D C$

Switching	Control
voltage	voltage
24-460VAC	$15-40 V D C$
24-460VAC	$15-40 \mathrm{VDC}$
12-24VDC	$7-30 \mathrm{VDC}$

Protec.
VDR
VDR
diode

XKM

- Dim. $25.2 \times 76.4 \times 53 \mathrm{~mm}$

$$
\begin{gathered}
\text { Specifications } \\
2 \text { poles motor switching control } \\
\text { AC motor change-over control } \\
\text { DC motor change-over control }
\end{gathered}
$$

XKR/XKRD

- Dim. $58.2 \times 76.4 \times 53 \mathrm{~mm}$

PCB RELAYS

SKA SKB

The SK range for PCB mounting is available in different models :
SKA/SKB (AC output) or SKD/SKLD (DC output).
\rightarrow SKA up to 5A 230 or 400VAC with built-in voltage
protection, ideal for solenoid or motor control.
\rightarrow SKB up to 5A 230 or 400VAC for resistive loads.

Product reference	Current	Switching voltage	Control voltage	LED	$1^{2} \mathrm{t}$	Protec.	Specifications
SK541101	2.5A	24-280VAC	3-30VDC	no	50A²s	-	AC zero-cross output / normaly closed
SKA10420	5A	12-275VAC	2.5-10VDC	no	$50 A^{2} \mathrm{~s}$	VDR	AC zero-cross output / most types of loads
SKA20420	5A	12-275VAC	4-30VDC	no	50A ${ }^{2}$ s	VDR	
SKA10440	5A	12-460VAC	2.5-10VDC	no	$50 A^{2} \mathrm{~s}$	VDR	
SKA11440	5A	12-460VAC	$3-10 \mathrm{VDC}$	yes	50A ${ }^{2}$ s	VDR	
SKA20440	5A	12-460VAC	4-30VDC	no	50A ${ }^{2} \mathrm{~s}$	VDR	
SKA20460	5A	24-600VAC	5-30VDC	no	$72 A^{2} \mathrm{~s}$		
SKA20421	5A	12-275VAC	$3-30 V D C$	no	$50 A^{2} \mathrm{~s}$	VDR	AC random output / most types of loads
SKA20441	5A	12-460VAC	3-30VDC	no	50A ${ }^{2}$ s	VDR	
SKA21441	5A	12-460VAC	7-30VDC	yes	$50 A^{2} \mathrm{~s}$	VDR	
SKB10420	5A	12-280VAC	3-10VDC	no	50A ${ }^{2} \mathrm{~s}$	-	AC zero-cross output/ resistive loads
SKB10440	5A	24-600VAC	3.7-10VDC	no	$72 A^{2} \mathrm{~s}$	-	
SKB20420	5A	12-280VAC	8-30VDC	no	$50 A^{2} \mathrm{~s}$		

- Dim. $43.2 \times 10.2 \times 25.4 \mathrm{~mm}$

SKL for AC output with a ceramic substrate that can be mounted on a heatsink. The SKL is available with current ratings from 16A to 75A.
For the power element, our SKL use TMS² technology reducing thermal stress and considerably improving life expectancy. Ideal for motor or lamps control (I^{2} t up to $5000 \mathrm{~A}^{2} \mathrm{~s}$) with high inrush current as well as heating applications. Easy to protect against short circuit with micro circuit breakers.

Product reference	Max. current with WF032000	Thyristor rating	Switching voltage	Control voltage	${ }^{12} \mathrm{t}$	Specifications
SKL10120	16A	16A	12-280VAC	4-14VDC	$128 A^{2}$ s	$\begin{aligned} & \text { AC } \\ & \text { zero-cross } \\ & \text { output } \end{aligned}$
SKL10220	21A	25A	12-280VAC	4-14VDC	$312 A^{2} \mathrm{~s}$	
SKL10240	22A	25A	24-600VAC	4-14VDC	$450 A^{2}$ s	
SKL10260	22A	25A	24-690VAC	4-14VDC	1 150A ${ }^{2}$ S	
SKL10540	27A	50A	24-600VAC	4-14VDC	$1800 A^{2} \mathrm{~s}$	
SKL10560	27A	50A	24-690VAC	4-14VDC	$1800 A^{2} \mathrm{~s}$	
SKL20120	16A	16A	12-280VAC	8-32VDC	$128 A^{2} \mathrm{~s}$	
SKL20220	21A	25A	12-280VAC	8-32VDC	$312 A^{2} \mathrm{~S}$	
SKL20240	22A	25A	24-600VAC	8-32VDC	$450 A^{2} \mathrm{~s}$	
SKL20740	30A	75A	24-600VAC	8-32VDC	$5000 A^{2}$ s	
SKL10521	27A	50A	12-280VAC	3-14VDC	2 450A ${ }^{2}$ S	AC random
SKL20241	22A	25A	24-600VAC	8-32VDC	$450 A^{2} \mathrm{~s}$	output

- Dim. $43,4 \times 6,3 \times 24,5 \mathrm{~mm}$

See DC output models pages 36-37

PCB RELAYS

SKH

The SKH range is a "ready to use" range with integrated heatsink.

Product reference	Output current	Output current with ventilation	Switching voltage	Control voltage	12 t
SKH10120	10A @ $20^{\circ} \mathrm{C}$	16A	12-280VAC	4-14VDC	$128 A^{2}$ S
SKH10240	10A @ $25^{\circ} \mathrm{C}$	25A	24-600VAC	4-14VDC	$450 A^{2}$ S
SKH20120	10A @ $20^{\circ} \mathrm{C}$	16A	12-280VAC	8-32VDC	$128 A^{2}$ S
SKH20240	10A @ $25^{\circ} \mathrm{C}$	25A	24-600VAC	8-32VDC	$450 A^{2}$ s

Other references available - please contact us. control heavy loads in an ultra-miniature, physically compact package.

- Dim. $43.6 \times 22 \times 35.7 \mathrm{~mm}$

SN8

This relay is designed for PCB applications and when fitted with suitable heatsink, can
\qquad

Product reference	Current	Switching voltage	Control voltage	$I^{2 t}$
SN842100	$25 A$	$24-280 V A C$	$3.5-15 V D C$	$260 A^{2}$ s

Other references available : please contact us.

- Dim. $35.05 \times 12.7 \times 28.32 \mathrm{~mm}$

SHT

Three-phase solid state relay in a single low profile package.
This relay is designed for PCB applications in order to provide control of medium power in three-phase environments.

Product reference	Current	Switching voltage	Control voltage	$1^{2} t$
SHT842300	$3 \times 25 A$	$24-280 V A C$	$10-30 V D C$	$260 A^{2} s$

Other references available : please contact us.

- Dim. $81.28 \times 8.26 \times 27.69 \mathrm{~mm}$

APPLICATIONS

SINGLE PHASE SOLID STATE RELAYS

All our solid state relays fitted with back to back thyristors (power products : single phase, two phase, three phase) now use TMS^{2} technology with a very high life expectancy compared to the majority of products on the market (application note on request).

OKOR ${ }^{\circledR}$ Innovation Performances et Design!

\rightarrow Versatile, easy and quick connections
\rightarrow Removable IP20
\rightarrow Same screwdriver for outputs and inputs
\rightarrow Tightening on metal baseplate not on plastic
\rightarrow Removable control terminals
\rightarrow SSR, mains and load status.

$$
\begin{aligned}
& \rightarrow \text { Output voltage from } 24 \text { to } 690 \text { VAC (600V-1200V-1600V peak) } \\
& \rightarrow \text { Very low zero-crossing level } \\
& \rightarrow \text { Large and regulated AC and DC input voltage } \\
& \rightarrow \text { Control status LED } \\
& \rightarrow \text { EMC compatible for industrial environment } \\
& \rightarrow \text { UL/cUL, VDE (EN60950), IEC/EN60947-4-3, CE marking } \\
& \rightarrow \text { Itsm up to } 2000 \mathrm{~A} \text { and } \mathrm{I}^{2} \mathrm{t}>200^{200 A^{2}}{ }^{\text {s }} \\
& \rightarrow \text { Protection against circuit breaker. }
\end{aligned}
$$

VERSATILE, EASY AND QUICK CONNECTIONS
WIRING

Direct connection by
wire or tip
$2 \times 6 \mathrm{~mm} 2$
strand i.e. 32 A
$2 \times 10 \mathrm{~mm} 2$ (AWG8) solid
i.e. 50 A

CONTROL WIRING

Screws connection (SO7 / SO8 / SO9 / SOL)

Removable spring terminals (SOR)

REMINDER sO7 random
SO8 zero-CROSS ALL KINDS OF LOADS
SO9 zero-cross resistive loads

SINGLE PHASE SOLID STATE RELAYS

okpac®

> celduc® offers "ready to use" solutions with integrated heatsink.

SO7
\rightarrow Random

Typical applications: Motors (AC-53), inductive loads and phase angle control applications.

- Random or instant switching
- Voltage protection on input (transil) and output (RC and VDR) depending on models. _

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Protec.
SO745090	50A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$2800 A^{2}$ S	RC-VDR
SO763090	35A	24-510VAC	1200V	3.5-32VDC	$1250 A^{2}$ s	RC-VDR
SO765090	50A	24-510VAC	1200 V	3.5-32VDC	$2800 A^{2} \mathrm{~s}$	RC-VDR
S0767090	75A	24-510VAC	1200V	$3.5-32 \mathrm{VDC}$	$7200 A^{2} \mathrm{~s}$	RC-VDR
SO768090	95A	24-510VAC	1200V	3.5-32VDC	16 200A ${ }^{2}$ s	RC-VDR
SO769090	125A	24-510VAC	1200V	$3.5-32 \mathrm{VDC}$	$24000 A^{2} \mathrm{~s}$	RC-VDR
SO789060	125A	24-690VAC	1600V	3.5-32VDC	$22000 A^{2}$ s	-

These products should be mounted on heatsinks in order to reach nominal current.

SO8
\rightarrow Zero-cross for most types of loads

SO8 range designed for most types of loads
\rightarrow Zero cross with low zero-crossing level (<12V)
\rightarrow Voltage protection on input (transil) with very high immunity according to IEC/ EN61000-4-4 depending on models
\rightarrow Control current $<13 \mathrm{~mA}$ for all the voltage range at any operating temperature.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Protec.
SO842074	25A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2}$ s	VDR
SO842974	25A	12-275VAC	600 V	20-265VAC/DC	$600 A^{2} \mathrm{~s}$	VDR
SO843070	35A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$1250 A^{2} \mathrm{~s}$	VDR
SO843970	35A	12-275VAC	600 V	20-265VAC/DC	$1250 A^{2} \mathrm{~s}$	VDR
SO845070	50A	12-275VAC	600 V	3-32VDC	$2800 A^{2} \mathrm{~s}$	VDR
SO845970	50A	12-275VAC	600 V	20-265VAC/DC	$2800 A^{2} \mathrm{~s}$	VDR
SO848070	95A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	16 200A ${ }^{\text {s }}$ s	VDR
SO849070	125A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	22 000A ${ }^{2}$ s	VDR
SO863070	35A	24-510VAC	1200V	3.5-32VDC	$1250 A^{2} \mathrm{~s}$	VDR
SO863970	35A	24-510VAC	1200V	20-265VAC/DC	$1250 A^{2} \mathrm{~s}$	VDR
S0865070	50A	24-510VAC	1200V	3.5-32VDC	$2800 A^{2} \mathrm{~s}$	VDR
SO865970	50A	24-510VAC	1200V	20-265VAC/DC	$2800 A^{2} \mathrm{~s}$	VDR
SO867070	75A	24-510VAC	1200V	3.5-32VDC	7 200A $^{2} \mathrm{~s}$	VDR
SO867970	75A	24-510VAC	1200V	20-265VAC/DC	$7 \mathrm{200A}^{2} \mathrm{~s}$	VDR
SO868070	95A	24-510VAC	1200V	3.5-32VDC	16 200A ${ }^{\text {s }}$ s	VDR
SO868970	95A	24-510VAC	1200V	20-265VAC/DC	16 200A ${ }^{2}$ s	VDR
SO869070	125A	24-510VAC	1200V	3.5-32VDC	22 000A ${ }^{2}$ s	VDR
SO869970	125A	24-510VAC	1200V	20-265VAC/DC	22 000A²s	VDR
SO885060	50A	24-690VAC	1600V	3.5-32VDC	$2800 A^{2} \mathrm{~s}$	-
SO885960	50A	24-690VAC	1600V	20-265VAC/DC	$2800 A^{2} \mathrm{~s}$	-
SO887060	75A	24-690VAC	1600V	3.5-32VDC	7 200A²s 2	-
SO888060	95A	24-690VAC	1600V	$3.5-32 \mathrm{VDC}$	16 200A ${ }^{\text {² }}$	-
SO889060	125A	24-690VAC	1600V	3.5-32VDC	$22000 A^{2} \mathrm{~s}$	-

- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$

[^0]
SINGLE PHASE SOLID STATE RELAYS

SO9

\rightarrow Zero-cross Resistive loads (AC-51)

- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$I^{2 t}$	Regulated control current
SO941460	$12 A$	$12-280 V A C$	600 V	$3-32 V D C$	$128 A^{2} s$	yes
SO942460	$25 A$	$12-280 V A C$	600 V	$3-32 V D C$	$600 A^{2} s$	yes
SO942470	$25 A$	$12-280 V A C$	600 V	$3-32 V D C$	$600 A^{2} s$	yes
SO942860	$25 A$	$12-280 V A C$	600 V	$15-32 V A C / 10-30 V D C$	$600 A^{2} s$	no
SO942960	$25 A$	$12-280 V A C$	600 V	$185-265 V A C / D C$	$600 A^{2} s$	no
SO943460	$40 A$	$12-280 V A C$	600 V	$3-32 V D C$	$1250 A^{2} s$	yes
SO945460	$60 A$	$12-280 V A C$	600 V	$3-32 V D C$	$2800 A^{2} s$	yes
SO96346H	$35 A$	$24-600 V A C$	1200 V	$3.5-32 V D C$	$882 A^{2} s$	yes
SO96386H	$35 A$	$24-600 V A C$	1200 V	$15-32 V A C$	$882 A^{2} s$	yes
SO963460	$40 A$	$24-600 V A C$	1200 V	$3.5-32 V D C$	$1250 A^{2} s$	yes
SO96546H	$50 A$	$24-600 V A C$	1200 V	$3.5-32 V D C$	$1680 A^{2} s$	yes
SO96546T	$50 A$	$24-600 V A C$	1200 V	$3.5-32 V D C$	$2800 A^{2} s$	yes
SO965460	$60 A$	$24-600 V A C$	1200 V	$3.5-32 V D C$	$2800 A^{2} s$	yes
SO967460	$90 A$	$24-600 V A C$	1200 V	$3.5-32 V D C$	$7200 A^{2} s$	yes
SO967860	$90 A$	$24-600 V A C$	1200 V	$15-32 V A C$	$7200 A^{2} s$	no
SO967960	$90 A$	$24-600 V A C$	1200 V	$20-265 V A C / D C$	$7200 A^{2} s$	yes
SO968470	$95 A$	$24-510 V A C$	950 V	$3.5-32 V D C$	$11250 A^{2} s$	yes
SO96846T	$95 A$	$24-600 V A C$	1200 V	$3.5-32 V D C$	$11250 A^{2} s$	yes

Specifications

Control current <13mA Control current <13mA VDR
with simplified input with simplified input Control current $<13 \mathrm{~mA}$ Control current <13mA Thermal Pad mounted Control current <13mA Control current <13mA with simplified input Control current <13mA Control current <13mA Thermal Pad mounted

These products should be mounted on heatsinks in order to reach nominal current.

SOL flatpac ${ }^{\circledR}$ \rightarrow Low profile ($\mathrm{h}=16,3 \mathrm{~mm}$)

Flatpac® SSRs are mainly designed for applications where a PCB is used on the input, possibly on the output side. Wiring will be facilitated as this relay also allows input or output cables to go any direction.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2 t}$
SOL942460	25 A	$12-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$600 \mathrm{~A}^{2} \mathrm{~s}$
SOL942960	25 A	$12-280 \mathrm{VAC}$	600 V	$185-265 \mathrm{VAC} / \mathrm{DC}$	$600 A^{2} \mathrm{~s}$
SOL965460	50 A	$24-600 \mathrm{VAC}$	1200 V	$3.5-32 \mathrm{VDC}$	$2800 \mathrm{~A}^{2} \mathrm{~s}$

These products should be mounted on heatsinks in order to reach nominal current.

- Dim. $45 \times 58.5 \times 16.3 \mathrm{~mm}$

SON

\rightarrow EMC optimised
(low electromagnetic emission - low RFI)

NEW

 Product
reference SON845040 SON865040 SON867040

Thyristor rating	Switching voltage
50 A	$40-260 \mathrm{VAC}$
50 A	$50-480 \mathrm{VAC}$
75 A	$50-480 \mathrm{VAC}$

Peak voltage
600 V
1200 V
1200 V

Peak voltage
600V
1200 V
1200 V

These relays are designed for use in applications where low electromagnetic emission is essential : household and electrical appliances, information technology and medical equipments. In compliance with EN 50081-1 (Generic Emission Standards for Residential).

These products should be mounted on heatsinks in order to reach nominal current.

SINGLE PHASE SOLID STATE RELAYS

\rightarrow Starting transformer
The SOP relays are studied for the operation of transformer primaries and of all saturable inductive loads, avoiding the magnetising current points (application note on request).

Product reference	Thyristor rating	Switching current AC-56a	Switching voltage	Peak voltage	Control voltage	${ }^{12} \mathrm{t}$	Specifications
SOP65070	50A	9A	100-480VAC	1200V	5-32VDC	$2800 A^{2} \mathrm{~s}$	peak
SOP69070	125A	32A	100-480VAC	1200V	5-32VDC	$20000 \mathrm{~A}^{2} \mathrm{~s}$]	starting

- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$

SOR

\rightarrow With removable input connector

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	
SOR842074	25A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2}$ S	
SOR863070	35A	24-510VAC	1200V	3.5-32VDC	$1250 A^{2}$ s	
SOR865070	50A	24-510VAC	1200 V	3.5-32VDC	$2800 A^{2} \mathrm{~s}$	
SOR867070	75A	24-510VAC	1200 V	3.5-32VDC	$7 \mathrm{200A}^{2} \mathrm{~s}$	- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$

With removable input connector - Spring terminals. Designed for most types of loads.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Specifications	
SC741110	12A	12-280VAC	600 V	$3-30 \mathrm{VDC}$	$72 A^{2} \mathrm{~s}$,
SC762110	25A	24-520VAC	1200 V	4-30VDC	2 65A²s	Random	©
SC764110	50A	24-520VAC	1200 V	4-30VDC	$1500 A^{2} \mathrm{~s}$	Random	
SC769110	125A	24-520VAC	1200 V	4-30VDC	$20000 A^{2}$ s		
SC841110	12A	12-280VAC	600 V	4-30VDC	$72 A^{2}$ s		
SC841910	12A	12-280VAC	600 V	90-240VAC/DC	$72 A^{2}$ s		
SC842110	25A	12-280VAC	600 V	4-30VDC	$312 A^{2} \mathrm{~S}$		- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$
SC844110	40A	12-280VAC	600 V	4-30VDC	$612 A^{2} \mathrm{~S}$		
SC862110	25A	24-520VAC	1200 V	$5-30 \mathrm{VDC}$	265As	Zero-cross most types of	
SC864110	50A	24-520VAC	1200 V	$5-30 \mathrm{VDC}$	$1500 \mathrm{~A}^{2} \mathrm{~s}$	most types of loads	
SC864810	50A	24-520VAC	1200 V	17-80VAC/DC	$1500 A^{2} \mathrm{~s}$		
SC864910	50A	24-520VAC	1200 V	90-240VAC/DC	$1500 A^{2} \mathrm{~s}$		
SC867110	75A	24-520VAC	1200V	5-30VDC	$5000 A^{2} \mathrm{~s}$		
SC869110	125A	24-520VAC	1200 V	5-30VDC	$20000 A^{2} \mathrm{~s}$		
SC942110	25A	12-280VAC	600 V	4-30VDC	$312 A^{2}$ s	Zero-cross /	
SC965160	50A	24-600VAC	1200 V	$5-30 \mathrm{VDC}$	$1500 A^{2} \mathrm{~s}$	resistive loads	
SC967100	75A	24-600VAC	1200 V	5-30VDC	$5000{ }^{2} \mathrm{~s}$	AC-51	

These products should be mounted on heatsinks in order to reach nominal current.

SINGLE PHASE SOLID STATE RELAYS

CQ

Performances \& reliability

\rightarrow Fixing screws compatible with all hockey puck style relays (celduc SO and SC range),
\rightarrow Maximum voltage up to 1600 V (690 VRMS), 600VAC and 1200VAC as standard,
\rightarrow Thyristor rating up to 75A,
\rightarrow Large input range : 3-32VDC with regulated current models,
\rightarrow AC input control available,
\rightarrow Input status yellow LED,
\rightarrow Over-voltage protection on input,
\rightarrow New generation of TMS² technology for thyristors for a longer life expectancy,
\rightarrow Quick and easy connections,
\rightarrow Designed according to European standards EN60947-4-3 (IEC947-4-3) and EN60950 (VDE0805 reinforced insulation) IEC62314-UL-cUL,
\rightarrow IP20 protection with removable flaps (SU range) or cover (SA range),
\rightarrow Other protection devices available as an option : RC snubber, VDR, self turn-on.

Price-effective and compact solution

\rightarrow The $22,5 \mathrm{~mm}$ pitch of our Solid State contactors reduces space to the minimum,
\rightarrow Reduced assembling time, easy cabling,
\rightarrow Reduced maintenance thanks to a very long life expectancy,
\rightarrow One single screw driver for input and output.

REMINDER

SA/SU 8 zerocrosss all kinds of loads
SA/SU 9 ZERO-CROSS RESISTIVE LOADS
SA/SU 7
RANDOM
"READY TO USE" VERSIONS
SA/SU L 22,5МM HEATISNK-3Kw
SA/SU M
45MM HEATSINK - 2,2K/W

VERSATILE, EASY AND QUICK CONNECTIONS

AS AN OPTION

Two modules are available directly pluggable on our SSR type SU and SUL
SAVE ROOM
SAVE COSTS
ADD MORE FUNCTIONS

SINGLE PHASE SOLID STATE RELAYS

The $22,5 \mathrm{~mm}$ pitch SSR solution

Our SA range has a connection on the power side and the control side by screws. Our parts include a transparent protective cover and some models are "ready to use" with integrated heatsinks (SAL and SAM versions).

SA range with screw connection on inputs

SA

SA8 : designed for most types of loads / integrated VDR protection
SA9 : designed for resistive loads AC-51
\rightarrow For mounting on your

Product reference	Thyristor rating	Switching voltage	Peak voltage	Switching current	12 t
SA842070	25A	12-275VAC	600V	$3-32 \mathrm{VDC}$	$600 A^{2}$ s
SA941460	12A	12-280VAC	600V	$3-32 \mathrm{VDC}$	128A ${ }^{2}$ s
SA942460	25A	12-280VAC	600V	$3-32 \mathrm{VDC}$	$450 A^{2}$ s
SA963460	35A	24-600VAC	1200V	3.5-32VDC	882A ${ }^{2}$ S
SA965460	50A	24-600VAC	1200V	3.5-32VDC	$1680 A^{2}$ s

These products should be mounted on heatsinks in order to reach nominal current.

- Dim. $22.5 \times 90 \times 42 \mathrm{~mm}$

SAL/SAM

SAx9 : designed for resistive loads AC-51

$$
\begin{aligned}
& \rightarrow \text { "Ready to use" } \\
& \text { on heatsink }
\end{aligned}
$$

- Dim. $45 \times 90 \times 112 \mathrm{~mm}$
- Dim. $22.5 \times 90 \times 112 \mathrm{~mm}$

Product reference	Thyristor rating	Max.swithcing current at $25^{\circ} \mathrm{C}$	Switching voltage	Peak voltage	Switching current	${ }^{12} \mathrm{t}$	Regulated control current	Specifications
SAL941460	12A	12A	12-280VAC	600 V	3-32VDC	$128 A^{2} \mathrm{~S}$	no	with simplified input
SAL942460	25A	23A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$450 A^{2} \mathrm{~s}$	no	with simplified input
SAL961360	15A	15A	24-600VAC	1200V	$6-32 \mathrm{VDC}$	$882 A^{2}$ S	yes	Control current <10mA
SAL962360	25A	23A	24-600VAC	1200V	$6-32 \mathrm{VDC}$	$882 A^{2} \mathrm{~S}$	yes	Control current <10mA
SAL963460	35A	30A	24-600VAC	1200V	$3.5-32 \mathrm{VDC}$	882A ${ }^{2}$ S	non	with simplified input
SAL965460	50A	32 A	24-600VAC	1200 V	$3.5-32 \mathrm{VDC}$	$1680 A^{2}$ S	non	with simplified input
SAM943460	35A	32A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$882 A^{2} \mathrm{~S}$	non	with simplified input
SAM963360	35A	32A	24-600VAC	1200V	$6-32 \mathrm{VDC}$	$882 A^{2}$ S	yes	Control current $<10 \mathrm{~mA}$
SAM965360	50A	45A	24-600VAC	1200V	$6-32 \mathrm{VDC}$	$1680 A^{2}$ S	yes	Control current <10mA

SINGLE PHASE SOLID STATE RELAYS

celpac ${ }_{\text {飞® }}^{\text {飞G }}$

The $22,5 \mathrm{~mm}$ pitch SSR solution

Our SU range comes with plug-in connectors. Our parts include removable protective components and some models are "ready to use" with integrated heatsinks (SUL and SUM versions).

SU

\rightarrow For mounting on your heatsink or panel mount

Product reference	Thyristor rating	Switching voltage	Peak voltage	Switching current	12 t
SU765070	50A	24-510VAC	1200 V	$3.5-32 \mathrm{VDC}$	$1680 A^{2}$ S
SU842070	25A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~s}$
SU842770	25A	12-275VAC	600 V	18-30VAC/DC	$600 A^{2}$ s
SU842970	25A	12-275VAC	600 V	160-240VAC	$600 A^{2}$ s
SU865070	50A	24-510VAC	1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~s}$
SU865770	50A	24-510VAC	1200 V	18-30VAC/DC	$1680 A^{2} \mathrm{~s}$
SU865970	50A	24-510VAC	1200 V	160-240VAC	$1680 A^{2} \mathrm{~s}$
SU867070	75A	24-510VAC	1200 V	$3.5-32 \mathrm{VDC}$	7 200A $^{2} \mathrm{~s}$
SU942460	25A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2}$ s
SU963460	35A	24-600VAC	1200 V	3.5-32VDC	$882 A^{2}$ S
SU965460	50A	24-600VAC	1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~S}$
SU967460	75A	24-600VAC	1200 V	3.5-32VDC	7 200A ${ }^{2}$ s

These products should be mounted on heatsinks in order to reach nominal current.

SUx7 : designed for motors AC-53 and inductive loads Also use in phase angle control systems
SUx8 : designed for most types of loads / integrated VDR protection

SUL/SUM

\rightarrow "Ready to use" on heatsink

Product reference	Thyristor rating	Max.swithcing current at $25^{\circ} \mathrm{C}$	Switching voltage	Peak voltage	Switching current	${ }^{12}$ t
SUL765070	50A	32A	24-510VAC	1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~s}$
SUL842070	25A	23A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~s}$
SUL842770	25A	23A	12-275VAC	600 V	18-30VAC/DC	$600 A^{2} \mathrm{~s}$
SUL842970	25A	23A	12-275VAC	600 V	160-240VAC	$600 A^{2}$ S
SUL865070	50A	32A	24-510VAC	1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~s}$
SUL865770	50A	32A	24-510VAC	1200 V	18-30VAC/DC	$1680 A^{2} \mathrm{~s}$
SUL865970	50A	32A	24-510VAC	1200 V	160-240VAC	$1680 A^{2}$ s
SUL867070	75A	35A	24-510VAC	1200 V	$3.5-32 \mathrm{VDC}$	7 200A $^{2} \mathrm{~s}$
SUL942460	25A	23A	12-280VAC	600 V	3-32VDC	$600 A^{2} \mathrm{~S}$
SUL963460	35A	30A	24-600VAC	1200 V	3.5-32VDC	$882 A^{2}$ S
SUL965460	50A	32A	24-600VAC	1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~s}$
SUL967460	75A	35A	24-600VAC	1200 V	$3.5-32 \mathrm{VDC}$	$7200 A^{2} \mathrm{~s}$
SUM865070	50A	45A	24-510VAC	1200 V	3.5-32VDC	$1680 A^{2}$ S
SUM867070	75A	45A	24-510VAC	1200 V	$3.5-32 \mathrm{VDC}$	7 200A ${ }^{2}$ s

SUx9 : designed for resistive loads AC-51

- Dim. $22.5 \times 90 \times 42 \mathrm{~mm}$

SINGLE PHASE SOLID STATE RELAYS

celpac ${ }^{\circledR}$ 民ब

 The 22.5 mm pitch SSR solutionTwo modules are available directly pluggable on our SSR type SU and SUL

SAVE ROOM / SAVE COSTS / ADD MORE FUNCTIONS

CURRENT MONITORING MODULE

ESUC

Combined with our SU/SUL

ADD TO YOUR SSR

Diagnostic information for up to 5 heaters in parallel with :
\rightarrow Permanent load current monitoring,
\rightarrow Current teaching function,
$\rightarrow 2$ alarm thresholds (+/-16\%),
\rightarrow Partial load break detection,
\rightarrow Open load detection,
\rightarrow Detection of short-circuited SSR.

Référence

produit
ESUC0450
ESUC0480
ESUC0150

Plage de
courant
2-40A
$2-40 \mathrm{~A}$
1-10A

Commande
8-30VDC
24-45VDC
8-30VDC

WHY CHOOSING THIS FUNCTION ?

\rightarrow Quick fault detections (instantaneous alarm)
\rightarrow Maintenance
\rightarrow To detect when a heater is broken which brings problems and is difficult to locate
\rightarrow To maintain good quality production for plastic/rubber machines (specially thermosetting machines).
$\rightarrow 22.5 \mathrm{~mm}$ wide with integrated heatsink and DIN rail adaptor
\rightarrow Reduction of quantity, cost and time of wiring.

TEMPERATURE CONTROLLER PID, CURRENT MONITOR AND COMMUNICATION INTERFACE IN ONE UNIT

ECOM0010

Combined with our SU/SUL

ADD TO YOUR SSR

\rightarrow Temperature controller with

- PID with automatic or manual settings,
- Insulated inputs for J, K, T, E thermocouples, PT100 to come
- Auxiliary output for heating, cooling, alarm or to control a 3 phase Solid State Relay,
- Loop and heater break alarms.

Current monitoring and alarms up to 50A.
RS485 communication interface / Modbus RTU (others on request)
\rightarrow Power supply : $24 \mathrm{Vdc}+/-10 \%$

WHY CHOOSING THIS FUNCTION ?

\rightarrow The ECOM is the most compact solution available on the market that incorporates the latest measuring and control technology.
\rightarrow This solution can answer the needs of cost reduction of electrical cabinets (smaller), PLC (less analogue and digital I/O's) and wiring (bus communication).

POWER SSRs WITH DIAGNOSTICS

celduc® relais offers different relay diagnosis solutions. These relays inform the user of the load status (resistive load), the output of the relay and the network.

WHICH SOLUTION TO CHOOSE?

Here are a few examples of the needs of our customers

NEED

- 1 RELAY for 1 heating element
+1 detection element
- 1 RELAY for 1 heating element
+1 rapid detection element
+ compact solution and ready to use solution

SOLUTIONS

\rightarrow SOD
\rightarrow SILD

ADVANTAGES

(for both SOD and SILD)
\rightarrow These relays inform the user of the load status (connected or not), the relay output (closed or not) and the network (state of the fuse or circuit breaker) inthe power circuit, thanks to an NC (Normally Closed) diagnostic contact.
\rightarrow Potential free
\rightarrow A single input PLC and can be placed in a series
\rightarrow Simple use
\rightarrow The diagnostic function does not require an external power supply
\rightarrow Short reaction time $<100 \mathrm{~ms}$

NEED

1 relay for several loads + need for a compact and ready to use solution

SOLUTIONS

\rightarrow ESUC current detection module combined with our SU/SUL solid state relays

ADVANTAGES

\rightarrow Detection of partial load break or current surge (works up to 5 identical loads)

\rightarrow Three-phase or possible multizone use
\rightarrow Space-saving with a 22.5 mm width only

NEED

Connection or disconnection of the heat zones
This is the case of thermoforming machines, for example, where it is necessary to adapt the heating surface to the size of the plastic sheets to be preheated. Solid state relays with standard diagnosis display an error if a heat zone is disconnected, which requires a particular or even complex management of diagnosis signals.

SOLUTIONS

\rightarrow SOI

AVANTAGES

\rightarrow The SOI range allows for the switching of the load current and provides simply the information of the presence (or lack thereof)
 of the output current which must then be interpreted by the user or the system.

NEED

Reading of the current and alarms via a communication interface

SOLUTIONS

\rightarrow Combined ECOM module with our SU / SUL solid state
 relays

ADVANTAGES

\rightarrow This product, which has been designed for temperature regulation (built-in PID), can also be used for:

- Measuring the load current
- Measuring the room temperature, the process or even the relay or its heatsink (built-in thermocouple input J, K, T, E)
- Creating alarms (current, temperature, relay status)
- Chrono-proportional control to adjust the power on the load
\rightarrow It communicates via a RS485 link and the MODBUS RTU protocol.
\rightarrow In order to view the states locally, it incorporates 3 LEDs and a configurable output.

POWER SSRs WITH DIAGNOSTICS

DIAGNOSTIC RELAY

Our range of diagnosis relay comes in celpac housing (ready to use) with our SILD and okpac® range (to mount on heatsinks) with our SOD and SOI.
These relays inform the user of the load status (resistive load), the output of the relay and the network through an NC (Normally Closed) diagnostic contact. The diagnostic function does not require an external power supply (celduc® patent) The contacts of various relays
can be placed in a series. It is possible to use these relays for a diagnosis in a three-phase system, star wiring without neutral.
Our SOI range includes a current transformer (CT) as well as a contact for signalling and therefore enables the switching of the load current by giving only the information of the presence of the output current which must then be interpreted by the user or the system.

The SILD range of diagnosis relay is in celpac housing (ready to use).

Product reference	Thyristor rating	Max.swithcing current at $25^{\circ} \mathrm{C}$	Switching voltage	Peak voltage	Switching current	$1^{22 t}$
SILD845160	50 A	32 A	$70-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$1500 \mathrm{~A}^{2} \mathrm{~s}$
SILD865170	50 A	32 A	$150-510 \mathrm{VAC}$	1200 V	$3.5-32 \mathrm{VDC}$	$15^{500 \mathrm{~A}^{2} \mathrm{~s}}$
SILD867170	75 A	35 A	$150-510 \mathrm{VAC}$	1200 V	$3.5-32 \mathrm{VDC}$	$5000 \mathrm{~A}^{2} \mathrm{~s}$

- Dim. $22.5 \times 80 \times 116 \mathrm{~mm}$

SOD

Product reference	Thyristor rating	Switching voltage	Peak voltage	Switching current	12 t
SOD843180	35A	50-265VAC	600 V	7-30VDC	$1250 A^{2} \mathrm{~S}$
SOD845180	50A	50-265VAC	600 V	7-30VDC	$2800 A^{2} \mathrm{~s}$
SOD849180	125A	50-265VAC	600 V	7-30VDC	$22000 A^{2} \mathrm{~s}$
SOD865180	50A	150-510VAC	1200 V	7-30VDC	2 800A²s
SOD867180	75A	150-510VAC	600 V	7-30VDC	7 200A²s 2

These products should be mounted on heatsinks in order to reach nominal current.

- Dim. $45 \times 58.5 \times 33.6 \mathrm{~mm}$

SOI
 NEW

OPERATION: By applying or removing a voltage on the control input, the SOI relay switches or interrupts the current in the load. If the value of the load current is greater than the threshold that was preset in the factory,
the current transformer included in the SOI will close the contact for signalling. It therefore indicates that a current is flowing into the load and leaves the user or the system to interpret this status.

ADVANTAGES

\rightarrow Reduction of quantity, cost and time of wiring
\rightarrow Elimination of the need to pass the power cables through a current transformer
\rightarrow Elimination of costly analogue inputs on the PLC
 relais

SINGLE PHASE SOLID STATE RELAYS

SSR with FASTON terminals

Solid State Relays with "FASTON" terminals are appropriate mainly for the food industry and for switching current < 20A.
celduc® relais offers a wide range of single phase SSR with "FASTON" terminals, but also two-phase SSR (see page 24) and four-legs SSR (see SCQ range page 23).

Miniature relays available with "FASTON" or PCB terminals.

- Dim. $21 \times 35.5 \times 15 \mathrm{~mm}$

SCF

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	LED	${ }^{12} \mathrm{t}$	Protec.
SCF42160	25A	12-280VAC	600V	4-30VDC	yes	$312 A^{2}$ S	-
SCF42324	25A	12-280VAC	600V	12-30VDC	no	312A ${ }^{2}$ S	VDR
SCF62160	25A	24-600VAC	1200 V	5-30VDC	yes	265A²S	-

These products should be mounted on heatsinks in order to reach nominal current.
E option "large Entraxe" and Loption "Faston" 4,8mm on request.

SCFL
\rightarrow EMC optimised
(low electromagnetic emission - low RFI)

To control resistive loads. "FASTON" terminals.

- Dim. $44.5 \times 58 \times 33 \mathrm{~mm}$
Product
reference
SCFL42100

Thyristor
rating
$25 A$
$25 A$

SCFL62100

These products should be mounted on heatsinks in order to reach nominal current.
These relays are designed for use in applications where low electromagnetic emission is essential : household and electrical appliances, information technology and medical equipments. In compliance with EN 50081-1 Generic Emission Standards for Residential. See also our SON range page 14.

- Dim. $44.5 \times 58.2 \times 32 \mathrm{~mm}$

SINGLE PHASE SOLID STATE RELAYS

- For a quick connection!

SP7/SP8

This new range extends the products available with FASTON terminals. In a full plastic case, these relays can nevertheless switch up to 12 A AC51. These relays are appropriate for any type of loads (such as heating or singlephase random motor) thanks to high immunity components and an integrated overvoltage protection combined with 800 Upeak power components. This range is well adapted to the food industry.

Product reference	Thyristor rating	Switching current AC-51	Switching voltage	Peak voltage	Control voltage	12 t	Specifications
SP752120	$25 A$	$12 A$	$12-280 V A C$	800 V	$3-32 V D C$	$340 A^{2} \mathrm{~s}$	Random
SP852120	$25 A$	12 A	$12-280 \mathrm{VAC}$	800 V	$4-32 \mathrm{VDC}$	$340 \mathrm{~A}^{2} \mathrm{~S}$	Zero-cross

These products should be mounted on heatsinks in order to reach nominal current.

- Dim. $38 \times 66.8 \times 22 \mathrm{~mm}$

SCO

\rightarrow Four-Leg Solid State Relays

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Led	Specifications
SCQ842060	$4 \times 25 \mathrm{~A}$	$12-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$288 \mathrm{~A}^{2} \mathrm{~s}$	oui	Common +VDC
SCQ842160	$4 \times 25 \mathrm{~A}$	$12-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$288 \mathrm{~A}^{2} \mathrm{~s}$	oui	Common OVDC + polarized connector

[^1]

- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$

FLASHING RELAYS

The ST6 blinking relays are 12A 12-50VAC or 25A 180-280VAC solid state flashing devices with $6,3 \mathrm{~mm}$ quick release type connectors. As soon as the unit is powered, it switches loads at a frequency of 1 hz or 2 hz . An external switch selects the required frequency (1 or 2 hz). \qquad

ST6

Product reference	Switching current	Switching voltage	Peak voltage	Flashing frequency
ST645000	10 A	$180-280 \mathrm{VAC}$	600 V	$1 / 2 \mathrm{~Hz}$
ST647000	25 A	$180-280 \mathrm{VAC}$	600 V	$1 / 2 \mathrm{~Hz}$

These products should be mounted on heatsinks in order to reach nominal current.

- Dim. $67 \times 38 \times 37.5 \mathrm{~mm}$

TWO-PHASE SOLID STATE RELAYS

Our two-phase range provides two solid state relays in a compact standard 45 mm enclosure. They are perfectly adapted to three phase applications with breaking of two phases only.

(Connectors to be ordered separately.)

WIRING EXAMPLES

2 load control wiring Single phase

Two-phase SSR SOB to control heaters connected in star
(for balanced low voltage loads without neutral connection)

Two-phase SSR SOB to control heaters connected in delta
(for high voltage, balanced or unbalanced loads)
 \rightarrow zero-cross

- Power and control connections by FASTON terminals (Fig.1)
- Double input with connector CE100F ITWPANCON type or similar + Power connection by FASTON 6.3 mm terminals with IP20 protection (Fig.2)

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Specifications	Fig.
SOB542460	2x25A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	265AS	zero-cross / 2 controls	1
SOB562460	2x25A	24-600VAC	1200 V	$3.5-32 \mathrm{VDC}$	265AS	zero-cross / 2 controls	1
SOB544330	2 x 40 A	12-275VAC	600 V	8-30VDC	$882 A^{2}$ S	zero-cross / 2 controls	2
SOB564330	2×40 A	24-510VAC	1200 V	8-30VDC	$882 A^{2}$ S	zero-cross / 2 controls	2

These products should be mounted on heatsinks in order to reach nominal current.

Double input with connector CE100F ITWPANCON type or similar.
\rightarrow zero-cross

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2 t}$	Specifications	Fig.
SOB665300	$2 \times 50 \mathrm{~A}$	$24-600 \mathrm{VAC}$	1200 V	$10-30 \mathrm{VDC}$	$1680 \mathrm{~A}^{2} \mathrm{~s}$	2 controls	3

These products should be mounted on heatsinks in order to reach nominal current.

SOB7

Thyristor rating	Switching
$2 \times 35 A$	voltage
$24-510 V A C$	
$2 \times 50 A$	$24-510 V A C$
$2 \times 75 A$	$24-510 V A C$

Peak voltage	Control voltage
1200 V	$8-30 \mathrm{VDC}$
1200 V	$8-30 \mathrm{VDC}$
1200 V	$8-30 \mathrm{VDC}$

${ }^{12 t}$	Specifications	Fig.
$1250 A^{2} s$	2 controls	
$2500 A^{2} s$	2 controls	4
$7200 A^{2} s$	2 controls	

- Dim. $45 \times 58.5 \times 27 \mathrm{~mm}$

TWO-PHASE SOLID STATE RELAYS

SOB8

SOB8 : zero-cross - designed for most types of loads.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Specifications	Fig.
SOB863860	$2 \times 35 A$	$24-600 V A C$	$1200 V$	$17-30 V A C / D C$	$882 A^{2} s$	2 controls	1
SOB865660	$2 \times 50 A$	$24-600 V A C$	$1200 V$	$8-30 V D C$	$2500 A^{2} s$	2 controls	1
SOB867640	$2 \times 75 A$	$24-510 V A C$	$1200 V$	$8-30 V D C$	$7200 A^{2} s$	2 controls $/$ Transil	1

SOB9

SOB9 : zero-cross - resistive loads AC-51.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage		12 t		Specifications	Fig.		- Dim. $45 \times 58.5 \times 27 \mathrm{~mm}$
SOB942360	2x25A	12-280VAC	600V	10-30VDC		$600 A^{2} \mathrm{~S}$		1 control	1		
SOB942660	2x25A	12-280VAC	600 V	10-3	VDC		A^{2} S	2 controls	1		(Connectors to be
SOB943360	2×35 A	12-280VAC	600 V	10-3	VDC		$0 A^{2} \mathrm{~s}$	1 control	1		ordered separately.)
SOB945360	$2 \times 50 \mathrm{~A}$	12-280VAC	600V	10-3	VVDC		$0 \mathrm{~A}^{2} \mathrm{~s}$	1 control	1		
SOB962060	$2 \times 25 A$	24-600VAC	600V	3,5-3	2VDC		$A^{2} \mathrm{~s}$	2 controls	1		
SOB963660	2x35A	24-600VAC	1200V	10-3	VDC		$\mathrm{A}^{2} \mathrm{~s}$	2 controls	1		82
SOB965060	$2 \times 50 \mathrm{~A}$	24-600VAC	1200 V	4-32	VDC		$\mathrm{A}^{2} \mathrm{~s}$	2 controls	1		
SOB965160	$2 \times 50 \mathrm{~A}$	24-600VAC	1200V	6-1	VDC		$\mathrm{A}^{2} \mathrm{~s}$	1 control	1		
SOB965660	$2 \times 50 \mathrm{~A}$	24-600VAC	1200V	10-3	VVDC	25	$0 A^{2} \mathrm{~s}$	2 controls	1		
SOB967660	2×75 A	24-600VAC	1200 V	10-30	VDC		$\mathrm{A}^{2} \mathrm{~S}$	2 controls	1		
Product reference	Switching current AC-51 $\left(40^{\circ} \mathrm{C}\right)$		Switching voltage	Peak voltage			${ }^{12}$ t	Specifi		Fig.	
SOB96366WF	2x15A		24-600VAC	1200V	10-30		$1250 A^{2} \mathrm{~s}$	Ready to u mounted		2	

SOBR

NEW
SOBR range with "push-in" style spring power connectors.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Specifications
SOBR965560	$2 \times 24 \mathrm{~A}$	$24-600 \mathrm{VAC}$	1200 V	$10-30 \mathrm{VDC}$	$1680 \mathrm{~A}^{2} \mathrm{~s}$	2 controls +1 commun internal connection on input SOBR965660
2x24A	$24-600 \mathrm{VAC}$	1200 V	$10-30 \mathrm{VDC}$	$1680 \mathrm{~A}^{2 s}$	controls	

ACCESSORIES FOR SOB \rightarrow Connectors

- Dim. $45 \times 58.5 \times 27 \mathrm{~mm}$

Product reference	Specifications	Relay type	Fig.	1	12
1 Y 020915	2 pole screw connector	SOB7 / SOB8 / SOB9-1 control	1		
1 Y022715	2 pole screw connector 270°	SOB7 / SOB8 / SOB9-1 control	2	3	1,4
1 Y040915	4 pole screw connector 90° for SOB	SOB7 / SOB8 / SOB9 - 2 controls	3		4
1 Y 041660	4 pole screw connector 90° \& 270° for SOB	SOB7 / SOB8 / SOB9 - 2 controls	4		
1 Y 041817	4 pole spring connector 180° for SOB	SOB7 / SOB8 / SOB9 - 2 controls	5	5	6
1 Y 042217	4 pole screw connector 45° for SOB	SOB7 / SOB8 / SOB9 - 2 controls	6		
1 Y 042715	4 pole screw connector 270° for SOB	SOB7 / SOB8 / SOB9 - 2 controls	7		
1 Y042716	4 pole spring connector 270° for SOB	SOB7 / SOB8 / SOB9 - 2 controls	8	7	8
1 Y044604	4 pole spring connector $180^{\circ}+$ locking	SOB7 / SOB8 / SOB9 - 2 controls			,

THREE-PHASE SOLID STATE RELAYS

celduc® relais offers further ranges of solid-state relays for controlling three-phase loads. Various models are available, with ratings up to 125 amps per phase, with either AC or DC input, random or zero-cross output.

WIRING EXAMPLES

Three-phase SSR SMT8/SGT8 controlling a three-phase motor with a thermal magnetic protection.

Motor reverser SV9 for three-phase asynchronous motor.

Three-phase SSR SMT/SGT to control heaters connected in star with fuses protection.

Three-phase SSR SMT/SGT to control heaters connected in delta with circuitbreaker.

2 legs three-phase SSR SMB/SGB to control heaters connected in star with fuses protection.

QUICK AND EASY CONNECTIONS

	cel3pac® - 100mm version, - Low profile : Height 34.7 mm , - Better performance terminals to reach higher thermal current limits, - Large power connections : up to $50 \mathrm{~mm}^{2}$ (AWG1)	sightpac® - Compact 45 mm version, - Fixing screws compatible with okpac $®$ and celpac ${ }^{\circledR}$ ranges, - A visionary range with open future for optional modules.
POWER WIRING	With screws connection With spring terminals	With screws With spring connection terminals
CONTROL WIRING		With pluggable connector

sightpac ${ }^{\circledR}$

NEW

SMB7/SMT7 random orinstant switching.
SMB8/SMT8 zERO CROSS FOR MOST TYPES OF LOADS. SMB9/SMT9

SMB

 This range is designed for controlling three phase loads connected in delta or, if balanced, connected in star without the neutral connection. Two of the three phases are switched by the SSR, the third being directly connected.
$\rightarrow 2$ leg three-phase SSRs

Product reference	Thyristor rating	$\begin{aligned} & \text { Switching } \\ & \text { current } \\ & \text { AC-51 }\left(40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { Switching } \\ & \text { current } \\ & \text { AC-53 }\left(40^{\circ} \mathrm{C}\right) \end{aligned}$	Switching voltage	Peak voltage	Control voltage	${ }^{12} \mathrm{t}$	Protec.
SMB8650510	$3 \times 50 \mathrm{~A}$	$3 \times 30 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600V	4-30VDC	$2800 A^{2} \mathrm{~s}$	RC - VDR
SMB8850210	$3 \times 50 \mathrm{~A}$	$3 \times 30 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-640VAC	1600V	$4-30 \mathrm{VDC}$	$2800 A^{2} \mathrm{~s}$	VDR
SMB8670910	3x75A	3×35 A	3×16 A	150-520VAC	1600V	4-30VDC	$7200 A^{2} \mathrm{~s}$	$\begin{gathered} \text { RC - VDR } \\ + \text { auxiliary contact } \end{gathered}$

- Dim. $45 \times 100 \times 48 \mathrm{~mm}$

SMT

 \rightarrow Three-phase SSRs with Input connector and spring power terminals

- Dim. $45 \times 100 \times 48$ mm
\rightarrow "Ready to use" version with integrated heatsink

Product reference	Thyristor rating	Switching current AC-51 $\left(40^{\circ} \mathrm{C}\right)$	Switching current AC- $53\left(40^{\circ} \mathrm{C}\right)$	Switching voltage	Peak voltage	Control voltage	$1^{2 t} \mathrm{t}$	Protec.
SMT8628521	$3 \times 25 \mathrm{~A}$	$3 \times 17 \mathrm{~A}$	$3 \times 5 \mathrm{~A}$	$24-520 \mathrm{VAC}$	1200 V	$24-255 \mathrm{VAC/DC}$	$380 \mathrm{~A}^{2} \mathrm{~S}$	RC -VDR

SGB 2G $\rightarrow 2$ leg three-phase SSRs

Product reference	Thyristor rating	$\begin{aligned} & \text { Switching } \\ & \text { current } \\ & \text { AC-51 }\left(40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { Switching } \\ & \text { current } \\ & \text { AC-53 }\left(40^{\circ} \mathrm{C}\right) \end{aligned}$	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$	Protec.	
SGB8850200	$3 \times 50 \mathrm{~A}$	$3 \times 50 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-640VAC	1600V	4-30VDC	$2800 A^{2} \mathrm{~s}$	VDR	
SGB8890200	3x125A	3×85 A	$3 \times 32 \mathrm{~A}$	24-640VAC	1600V	4-30VDC	$22000 A^{2}$ s	VDR	

THREE PHASE SOLID STATE RELAYS

SGB7 / SGT7 random orinstant switching
SGB8 / SGT8 zero cross for most types of loads SGB9 / SGT9

Product reference	Thyristor rating	$\begin{aligned} & \text { Switching } \\ & \text { current } \\ & \text { AC-51 }\left(40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { Switching } \\ \text { current } \\ \text { AC-53 }\left(40^{\circ} \mathrm{C}\right) \end{gathered}$	Switching voltage	Peak voltage	Control voltage	${ }^{12} \mathrm{t}$	Protec.	Fig.
SGT7650500	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600V	4-30VDC	$2800 A^{2} \mathrm{~s}$	RC - VDR	1
SGT7690500	$3 \times 125 A$	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600V	4-30VDC	$22000 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8638500	3×35 A	3×35 A	$3 \times 7 \mathrm{~A}$	24-520VAC	1600V	24-255VAC/DC	$1250 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8650810	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600V	4-30VDC	$2800{ }^{2} \mathrm{~s}$	RC - VDR + Temperature alarm	3
SGT8658500	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600V	24-255VAC/DC	$2800 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8670500	$3 \times 75 \mathrm{~A}$	$3 \times 54 \mathrm{~A}$	3×16 A	24-520VAC	1600V	4-30VDC	$7 \mathrm{200A}^{2} \mathrm{~s}$	RC - VDR	1
SGT8678500	$3 \times 75 \mathrm{~A}$	$3 \times 54 \mathrm{~A}$	3×16 A	24-520VAC	1600V	24-255VAC/DC	$7200 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8690500	3x125A	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600V	4-30VDC	$22000 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8698500	3x125A	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600V	24-255VAC/DC	$22000 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8850200	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-640VAC	1600V	4-30VDC	$2800{ }^{2} \mathrm{~s}$	VDR	1
SGT8858200	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-640VAC	1600V	24-255VAC/DC	$2800{ }^{2} \mathrm{~s}$	VDR	1
SGT8859200	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-640VAC	1600V	90-280VAC/DC	$2800{ }^{2} \mathrm{~s}$	VDR	1
SGT8879200	3×75 A	$3 \times 54 \mathrm{~A}$	3×16 A	24-640VAC	1600 V	90-280VAC/DC	$7200 A^{2} \mathrm{~s}$	VDR	1
SGT9834300	$3 \times 35 \mathrm{~A}$	$3 \times 30 \mathrm{~A}$	-	24-640VAC	1600V	4-30VDC	$1250 A^{2} \mathrm{~s}$	TVS	1
SGT9854300	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	-	24-640VAC	1600V	4-30VDC	$2800 A^{2} \mathrm{~s}$	TVS	1
SGT9854320	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	-	24-640VAC	1600V	4-30VDC	$2800{ }^{2} \mathrm{~s}$	TVS	2
SGT9874300	3x75A	$3 \times 54 \mathrm{~A}$	-	24-520VAC	1600V	4-30VDC	$7 \mathrm{200A}^{2} \mathrm{~s}$	TVS	1

These products should be mounted on heatsinks in order to reach nominal current.
\rightarrow "Ready to use" version with integrated heatsink

SGT8658502	$3 \times 50 \mathrm{~A}$	$3 \times 24 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600V	24-255VAC/DC	$2800 A^{2} \mathrm{~s}$	RC - VDR	4
SGT8698503	$3 \times 125 \mathrm{~A}$	3×48 A	$3 \times 32 \mathrm{~A}$	24-520VAC	1600V	24-255VAC/DC	$22000 A^{2} \mathrm{~s}$	RC - VDR	5
SGT8698504	$3 \times 125 \mathrm{~A}$	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600V	24-255VAC/DC	$22000 A^{2} \mathrm{~s}$	RC - VDR	6

1

2

3

- For dimensions, please see technical data-sheet.

MOTOR CONTROL

SMR

\rightarrow AC Reversing switches

This range is used to reverse the rotational direction of a motor (2.2kW max).

SG9 SV9 SW9 $\rightarrow \mathrm{AC}$ Reversing switches

These relays are used to reverse the rotational direction of a motor.
The SV9 range is with IP20 housing.
The SW9 range is ready to use with heatsink and DIN rail mounting integrated.
They are all supplied with LED indicators and protection against simultaneous controls (interlocking).
Available in 40 or $47,6 \mathrm{~mm}$ housing.

- Dim. $100 \times 73.5 \times 39.5 \mathrm{~mm}$

- Dim. $100 \times 76 \times 56.5 \mathrm{~mm}$

- Dim. $100 \times 76 \times 72$ mm

- Dim. $83 \times 90 \times 1555 \mathrm{~mm}$

XKRD SGRD

\rightarrow DC Reversing switches

Our SGRD reversing unit for DC motor control offers all the necessary built-in control protections including protection against wiring errors or short circuit on the input. This version includes the interlocking function to avoid control of the two directions at the same time.
The ready to use module XKRD30506 for Din-Rail mounting comprises 4 Solid State relays wired as a reverser to be used to change the direction of a DC motor (100W @ 24 Vdc).

Product reference	Switching current	Switching voltage	Peak voltage	Control voltgae
SGRD01006	10 A	$8-36 \mathrm{VDC}$	60 V	$8-36 \mathrm{VDC}$
XKRD30506	5 A	$7-36 \mathrm{VDC}$	60 V	$7-30 \mathrm{VDC}$

- Dim. $58.2 \times 76.4 \times 53 \mathrm{~mm}$

MOTOR CONTROL

SYMC

\rightarrow To limit peak energy demand!

This new AC single phase softstarter is engineered to the highest quality and is designed especially for single phase motors 32A/230Vac with starting capacitor (e.g. compressor for heat pumps or refrigerating chambers).
This device is designed in compliance with EN60947-4-2.
\rightarrow Starting current limited to 45A (NFC15-100)
\rightarrow Over-load motor protection
\rightarrow Diagnostic information

Product reference	Pmax motors 230VAC	Max. Current AC53a	Specifications SYMC0001
5500W	32A	Internal ByPass Ready to use	

ACCESSORY	
Product reference	Specification 3D03000P
Condensator $220 \mu \mathrm{~F} 275 \mathrm{~V}$	

- Dim. $100 \times 76 \times 58.5 \mathrm{~mm}$

SO4

\rightarrow Single phase softstarters

Product reference	Switching voltage	Switching current	Control voltage	Fig n°	
SO400200	$200-260 V A C$	$35 A$			
SO400300	$200-260 V A C$	$40 A^{*}$	Soft-starter		1
2					

1

with integrated heatsink

- Dim. $45 \times 58.2 \times 27 \mathrm{~mm}$
*Value given at $20^{\circ} \mathrm{C}$ ambient

SMCV SMCW

MOTOR CONTROL :

\rightarrow Efficient reduction of torque and starting current.
INCANDESCENT OR INFRARED LAMP STARTING:
\rightarrow Reduction of in rush current
\rightarrow Increase in life expectancy

TRANSFORMER CONTROL (LOADED) :

\rightarrow Elimination of saturation current
\rightarrow Improved control and protection

This range of single-phase softstarters is designed for universal motors or lamps.

ANALOGUE CONTROL RELAYS

celduc® relais offers a wide range of controllers with different control modes and input types.
Types of input control:
0-10VDC, 4-20mA , potentiometer or PWM (Pulse Width Modulation).

3 control modes are available:

- Burst control mode controllers
- Full wave pulse controllers
- Phase angle controllers

A technology for every application!

WHICH MODE TO CHOOSE?

\rightarrow Comparison of the 3 control modes - setting to 50%

	Working principles	Advantages	Typical applications
BURST CONTROL MODE SO3 RANGE (page 33)	In the time of a given cycle (here 1 or 2 seconds), the variation of the load power is done by eliminating whole alternations. The distribution of eliminations is carried out according to a complex rule. Thus, in the example shown, the load is only powered to 50% because of the elimination of an alternation out of two.	This type of control allows the power to be finely modulated according to the analogue control, while limiting disturbances.	For the control of resistive loads at low thermal inertia such as the short-wave infrared transmitters (infrared tubes)
FULL WAVE PULSE CONTROLLERS SG5 RANGE (page 34)	In the time of a given cycle (variable depending on the models), the variation of the load power is done by eliminating whole alternations. The elimination is done linearly following the cyclic Ton/Tcycle report requested by the control input. Thus, in the example opposite, the load is only powered 50% of the time of the cycle (Ton/Tcycle=0.5).	This type of control presents the advantage of not generating interference since start-up is near 0 voltage.	Adapted to loads with high inertia (industrial furnaces)
PHASE ANGLE CONTROLLERS SINGLE PHASE SG4 - SO4 - SIL4 - SIM4 RANGES (pages 32-33) THREE-PHASE SGTA AND SVTA RANGE (page 35)	On the principle of the light dimmer, this control mode allows a very fine control of the load power by removing a part of the the mains voltage sinusoid in accordance with the control input. The proportional response between the input control and the output power depends on the controller model and can be linear in angle, U^{2} or in Urms. Thus, in the example below, the load is only powered to 50% because of the elimination of the half of the halfalternations of the mains voltage.	This control mode allows the load power to be finely adjusted, for example, when the refinement of the temperature regulation takes precedence over the electromagnetic disturbances generated by this type of solution (a filter is recommended).	Mainly for loads that react quickly when faced with voltage variation (lamps, motors). Also for DC loads behind a rectifier bridge (heated wires, Peltier effect modules).

ANALOGUE CONTROL RELAYS

SG4

\rightarrow Single phase angle controllers

This relay is designed to proportionally vary the switching point on a sinusoidal mains supply via an isolated analogue control signal thereby varying the RMS voltage at the terminals of the load. Applications : light dimmer, heating regulation, single phase variable speed control (vibrating feeders,etc). Model with LED and RC and VDR network.

Product reference	Thyristor rating	Switching voltage	Control voltage	12 t	External power supply required?
SG444020	40A	115-265VAC	0-10VDC	$1500 \mathrm{~A}^{2} \mathrm{~s}$	no
SG464020	40A	200-460VAC	0-10VDC	$1500 A^{2} \mathrm{~s}$	
SG468020	70A	200-460VAC	0-10VDC	$5000 A^{2} \mathrm{~s}$	
SG469020	110A	200-460VAC	0-10VDC	$20000 A^{2}$ s	
SG444120	40A	115-265VAC	Potentiometer	$1500 A^{2} \mathrm{~s}$	
SG464120	40A	200-460VAC	Potentiometer	$1500 A^{2} \mathrm{~s}$	
SG469120	110A	200-460VAC	Potentiometer	$20000 A^{2}$ s	
SG444420	40A	115-265VAC	4-20mA	$1500 A^{2} \mathrm{~s}$	
SG464420	40A	200-460VAC	4-20mA	$1500 A^{2} \mathrm{~s}$	
SG468420	70A	200-460VAC	4-20mA	$5000 A^{2} \mathrm{~s}$	
SG469420	110A	200-460VAC	4-20mA	$20000 A^{2} \mathrm{~s}$	

- Dim. $100 \times 73,5 \times 39,5 \mathrm{~mm}$

These products should be mounted on heatsinks in order to reach nominal current.

SO4

\rightarrow Single phase angle controllers

Product reference	Thyristor rating	Switching voltage	Control voltage	External power supply required?	Fig.
SO445020	50A	100-280VAC	0-10V	yes	1
SO465020	50A	200-480VAC	0-10V	yes	1
SO468020	95A	200-480VAC	0-10V	yes	1
SO469020	125A	200-480VAC	0-10V	yes	1
SO468120	95A	200-480VAC	0-5V	yes	1
SO467501	75A	160-450VAC	1-5V	no	3
SO445320	50A	100-280VAC	Potentiometer	yes	1
SO465320	50A	200-480VAC	Potentiometer	yes	1
SO445420	50A	90-265VAC	4-20mA	no	2
SO465420	50A	200-480VAC	4-20mA	no	2
SO467420	75A	200-480VAC	4-20mA	no	2
SO468420	95A	200-480VAC	4-20mA	no	2
SO469420	125A	200-480VAC	4-20mA	no	2
SO465620	50A	200-480VAC	PWM	yes	1

- Dim. $45 \times 58,2 \times 27 \mathrm{~mm}$

Other functions possible : phase angle control, full wave pulse control, fast burst control Soft-
Starter,timers and flashing relay, ... - please consult us.

ANALOGUE CONTROL RELAYS

SIL4 / SIM4

Our Slx4 range is in celpac® housing (ready to use).
This range is designed for resistive loads.

\rightarrow Single phase angle controllers

SO3

\rightarrow Burst control mode
$(\mu \mathrm{P}$ based unit)

This control mode is particularly suitable for resistive loads having a low thermal inertia like short wave Infra Red sources (IR lamps). It allows a very fine control of power according to the analogue input signal while reducing noise emission level (EMC conducted emissions). This control mode consists in switching streams of full sine waves equally distributed along a fixed modulation period (TM) function of the analogue input signal. The $\mu \mathrm{P}$ constantly computes the number of full sine waves to be switched along the TM period.

- Built-in protection
- Control by Profi bus DP

MULTIZONES POWER CONTROLLER

Taking into account the identified needs of the market, celduc® relais has developed infrared lamp temperature control boxes. The technology used, based on solid state relays for power connected to a complex electronic, helps to ensure power control up to 12 lamps in a precise and efficient way.
A program allows the PLC to be informed of the operating state and possible faults helps to ensure power control up to 12 lamps in a precise and efficient way.
A program allows the PLC to be informed of the operating state and possible faults in the manufacturing process.

Characteristics of the control boxes:

- Heat box for a maximum of 12 IR channels (4 kW max. per channel and 36 kW max. per box)
- U2 type mains variations compensation (syncopated)
- Detections: broken lamp < 250 ms ; over/undervoltage; overheating; broken fuse developed infrared lamp temperature control boxes. The technology used,
- Dim. $45 \times 80 \times 116 \mathrm{~mm}$

Other power rating and / or control on request

Product reference	Thyristor rating	Switching voltage	Control voltage	External power supply required?
SO367001	75 A	400VAC	0-10VDC	no

 relais

ANALOGUE CONTROL RELAYS

SG5

\rightarrow Full wave pulse controllers

This relay has an analog input isolated from the mains to proportionally vary the cyclic operating ratio of a load (t / T). Control and mains are synchronous and output only has full periods. Models supplied with LED indicators together with RC \& VDR network protection.

Product reference	Thyristor rating	Switching voltage	Control voltage	${ }^{12} \mathrm{t}$	External power supply required?	
SG541020	10A	230VAC	0-10VDC	$72 A^{2} \mathrm{~s}$		
SG544020	40A	230VAC	0-10VDC	$610 \mathrm{~A}^{2} \mathrm{~s}$		\uparrow
SG564020	40A	400VAC	0-10VDC	$610 A^{2} \mathrm{~s}$		NAM
SG544120	40A	230VAC	Potentiometer	$610 A^{2} \mathrm{~s}$	no	VV] N
SG564120	40A	400VAC	Potentiometer	$610 A^{2} \mathrm{~s}$		
SG541420	10A	230VAC	4-20mA	72A ${ }^{2}$ s		
SG564420	40A	400VAC	4-20mA	$610 \mathrm{~A}^{2} \mathrm{~s}$		- Dim. $100 \times 73,5 \times 39,5 \mathrm{~mm}$

For higher power ratings and three phase applications, ask for our application notes.
These products should be mounted on heatsink in order to reach nominal current.

SWG5

\rightarrow Single phase power controllers

Product reference	Switching power	Switching voltage	Control voltage	External power supply required?	Fig.
SWG50210	2 kW	230VAC	0-10VDC	no	1
SWG50810	8 kW	230VAC	0 -10VDC	no	2

Control voltage $0-5 \mathrm{~V}$ or potentiometer on request.

SWG8

 \rightarrow Three-phase power controllers| Product
 reference | Switching
 power | Switching
 voltage | Control
 voltage |
| :---: | :---: | :---: | :---: |
| SWG81510 | 20 kW | | |
| SWG82710 | 27 kW | | |
| SWG83610 | 36 kW | | |
| SWG84210 | 42 kW | 400VAC | $0-10 \mathrm{VDC}$ |
| SWG84810 | 48 kW | | |
| SWG86010 | 60 kW | | |
| SWG88010 | 80 kW | | |

This range is based on the SG5 controllers.
The SWG5 are fitted with heatsinks and DIN rail adapters. Application : single phase heaters.

THREE-PHASE PROPORTIONAL CONTROLLERS

SVTA

\rightarrow Allows control of any type of loads (except capacitive) 3 or
4 wires (neutral), delta or star wiring :

- Resistive loads for temperature control (infrared lamps, kilns, resistors, ...)
- Resistive loads for light control (bulbs, halogen, UV, scenes,...)
- Loads including a transformer, a coil or a rectifier for voltage control (power supplies, high voltage generators,...)
- Motors for voltage speed control (Possibility to reduce the speed depending on the type of motor and machine, motor fans,...)

Product reference	Max. current AC-51	Max. current AC-53a	Control	External power supply required?
SVTA4650E	50A	16A	0-10V	no
SVTA4651E	50A	16A	Potentiometer	
SVTA4684E	95A (*)	25A	4-20mA	
SVTA4690E	125A (*)	30A	0-10V	
SVTA4691E	125A (*)	30A	Potentiometer	
SVTA4694E	125A (*)	30A	4-20mA	

* Max. wire size $=10 \mathrm{~mm}^{2}$: double wires or use special adaptors for current $>50 \mathrm{~A}$.

Please refer to the mounting instructions.
\rightarrow Six thyristor proportional phase angle controller (Three phase positive and negative cycle control) : Balanced currents, less harmonics, ...
\rightarrow Softstart and softstop ramps (increases the lifetime expectancy of the assembly)
\rightarrow Diagnostic functions
\rightarrow Compact housing.

SGTA

- MAIN CHARACTERISTICS•

\rightarrow Small housing
\rightarrow Wide mains frequency variation $(40-65 \mathrm{~Hz})$
\rightarrow Built-in overvoltage protection
\rightarrow High $\mathrm{I}^{2 \mathrm{t}}$ power elements
\rightarrow Fully optoisolated full cycle three phase phase angle controller (balanced currents, less harmonics, ...)
\rightarrow The minimum voltage applied on the load is the lowest in the market ($3 \% \mathrm{RMS}$ on the nominal voltage against 40% RMS offered by our competitors !)
\rightarrow Lots of possible options on request
\rightarrow Manufactured in compliance with major international standards EMC, LVD, UL, VDE.

- TYPICAL APPLICATIONS •
\rightarrow Resistive loads for temperature control (infrared lamps, kilns, resistors, ...)
\rightarrow Resistive loads for light control (bulbs, halogen, scenes, ...)

Product reference	Max. current AC-51	Switching voltage	Control	External power supply required?
SGTA4650	50 A	$300-510 \mathrm{VAC}$	$0-10 \mathrm{~V}$	
SGTA4651	50 A	$300-510 \mathrm{VAC}$	$0-5 \mathrm{~V}$	$8-32 \mathrm{~V}$ external power supply required
SGTA4653	50 A	$300-510 \mathrm{VAC}$	Potentiometer	$4-20 \mathrm{~mA}$

Other rating on request.

- Dim. $75.15 \times 100 \times 46 \mathrm{~mm}$

DC SOLID STATE RELAYS

These relays are designed to switch DC loads e.g solenoid valves, brakes, indicators, motors (possibly on AC mains under specific conditions). All possible technologies can be available :

MOSFET

For applications where overcurrent capability and low dissipated power are needed.

BIPOLARE

For applications where low control current is needed.

IGBT

For high voltage applications (> 600 VDC).

FOR EACH APPLICATION THE CORRESPONDING TECHNOLOGY!
STANDARD RANGE UP TO 1200VDC, 150A.

MOSFET Technology

Product reference	Switching current	Switching voltage	Peak voltage	Control voltage	Protection	Fig.	
SLD01210	2,5A	0-60VDC	60V	3-10VDC			
SLD03210	2,5A	0-60VDC	60V	18-32VDC			3
SLD01205	4A	0-32VDC	60V	$3-10 \mathrm{VDC}$	Transil	1	
SLD02205	4A	$0-32 \mathrm{VDC}$	60 V	7-20VDC			- Dim. $29 \times 12.7 \times 25.4$ mm
SLD03205	4A	0-32VDC	60V	18-32VDC			
STD03205	2,5A	0-30VDC	60V	12-30VDC			
STD03505	5A	0-30VDC	60 V	12-30VDC		2	
STD03510	5A	0-68VDC	60V	12-30VDC	Transil	2	
STD07205	2,5A	0-30VDC	60V	12-30VDC 15-30VAC	Transil		
SPD03505	5A	0-30VDC	60 V	12-30VDC		3	
SPD07505	5A	0-30VDC	60 V	12-30VDC 15-30VAC		3	- Dim. $43.6 \times 6.3 \times 24.5 \mathrm{~mm}$
SKLD11006	10A	$7-36 \mathrm{VDC}$	60V	3-10VDC	Transil	4	
SKLD31006	10A	7-36VDC	60 V	7-30VDC	Transil	4	
SCM030200	30A	0-200VDC	200 V	4.5-32VDC			
SCM040600	40A	0-600VDC	600 V	4.5-32VDC		5	
SCM0100200	100A	0-200VDC	200V	4.5-32VDC		5	5
SCM0150100	150A	0-100VDC	100V	$4.5-32 \mathrm{VDC}$			
SOM02060	20A	5-40VDC	60V	3.5-32VDC			
SOM020100	20A	$5-60 \mathrm{VDC}$	100V	3.5-32VDC			
SOM020200	20A	5-110VDC	200V	$3.5-32 \mathrm{VDC}$			
SOM04060	40A	$5-40 \mathrm{VDC}$	50V	3.5-32VDC	Transil	6	2 cors
SOM040100	40A	$5-60 \mathrm{VDC}$	100V	3.5-32VDC			
SOM040200	40A	5-110VDC	200V	3.5-32VDC			s
SOM06075	60A	$5-40 \mathrm{VDC}$	75 V	$3.5-32 \mathrm{VDC}$			
ESO01000	0-80A	0-130VDC	200V	Protection against line inductance (C1, D2) : option for SOM range	Diode + capacitor	6	- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$

celduc $^{\circ}$ relais

BIPOLAR Technology

Product reference	Switching current	Switching voltage	Peak voltage	Control voltage	Protection	
SKD10306	3A	2-60VDC	60V	$3-30 V D C$	Diode	
XKD10120	1A	2-220VDC	220 V	5-30VDC		- Dim. $43.2 \times 10.2 \times 25.4 \mathrm{~mm}$
XKD10306	3A	2-60VDC	60 V	5-30VDC		C
XKD11306D	3A	2-60VDC	60 V	$3-30 V D C$	Diode	
XKD70306	3A	2-60VDC	60V	10-30VAC/DC		\bigcirc
XKD90306	3A	2-60VDC	60V	90-240VAC/DC		- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$
SCC10506	5A	2-60VDC	60V	3-16VDC		
SCC20506	5A	2-60VDC	60V	10-32VDC	Diode	
SCC21506	15A	2-60VDC	60 V	10-32VDC		- Dim. $12.2 \times 76.4 \times 53 \mathrm{~mm}$

IGBT Technology

Product reference	Switching current	Switching voltage	Peak voltage	Control voltage	Protection
SCI0251700	25A	0-1700VDC	1700V	4.5-32VDC	Reverse diode
SCI0501200	50A	0-1200VDC	1200 V	4.5-32VDC	Reverse diode
SCI0100600	100A	0-600VDC	600 V	4.5-32VDC	Reverse diode
SDI0501700	50A	24-940VDC	1700V	24-48VDC	Depending on models :
SDI0501710	50A	24-940VDC	1700V	72-110VDC	\rightarrow Over-voltage protection \rightarrow Load short circuit protection
SDI1001700	100A	24-940VDC	1700V	24-48VDC	\rightarrow Over-load temperature protection

Products without integrated over-voltage protection (transil or VDR) or having only a Freewheel diode, must be fitted with an external overvoltage protection. The maximum operating voltage is then often reduced to the half of the specified maximum operating voltage.

> With celduc® relais, DC power switching under control !

- Dim. $157 \times 68 \times 83 \mathrm{~mm}$
- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$

On request : "ready to use" products i.e. products including integrated voltage protection, proportional controllers, DC motor reversers ... Please consult us !"

APPLICATIONS

DC power supplies (converters like choppers, inverters, ...)
Signal switching (testing equipment, ...)
Electro-magnets (induction motor braking, ...)
Heaters (air conditioning in trains, tramways, ...)
Batteries (ships, solar systems, ...)
DC Motors (travelling cranes, cranes, vehicles, ...)

ACCESSORIES

Heatsinks

Product reference	Thermal characteristics	Specifications	Dimensions mm	Relay type	Fig n°
WF031100	0.3K/W	ventiled for DIN rail or screw - fan supply 230Vac	$110 \times 120 \times 145$	SO, SC, SG, SG, SV	1
WF031200	0.3K/W	ventiled for DIN rail or screw - fan supply 24 Vdc	$110 \times 120 \times 145$	SO, SC, SG, SG, SV	1
WF050000	0.55K/W	DIN rail adaptor as option	$110 \times 100 \times 200$	SO, SC, SG, SG, SV	2
WF071000	0.7K/W	DIN rail adaptor as option	$110 \times 89.5 \times 120$	SO, SC, SA, SU, SM, SG	3
WF115100	0.9K/W	for DIN rail or screw	$110 \times 100 \times 90$	SO, SC, SG, SV	4
WF112100	1K/W	for DIN rail or screw	$49.5 \times 117.5 \times 120$	SA, SU	5
WF108110	1.1K/W	for DIN rail or screw	$89.8 \times 81 \times 98.02$	SO, SC	6
WF121000	1.2K/W	for DIN rail or screw	$100 \times 40 \times 100$	SO, SC, SG, SV	7
WF124000	1.2K/W	DIN rail adaptor as option	$90 \times 100 \times 69$	SO, SC, SA, SU, SM	8
WF114200	1.75K/W	for DIN rail or screw	$45 \times 73 \times 100$	SO, SA, SU, SM	9
WF210000	2.1K/W	DIN rail adaptor as option	$96 \times 41 \times 55$	SO, SC	10
WF151200	2.2K/W	for DIN rail or screw	$45 \times 73 \times 80$	SO, SC, SA, SU	11
WF311100	3K/W	for DIN rail or screw	$22.5 \times 73 \times 80$	SA, SU	12

The Rth values are given for a temperature of $50^{\circ} \mathrm{C}$ in calm air. Other dimensions available on request.

Accessories

PROTECTION COVERS / FLAPS
PROTECTION COVERS / FLAPS
1K199000

1K460000 | Protection cover for SGT/SG9 |
| :--- |
| |
| |
| Protection cover for SC range (except SCB and |
| 1K470000 |
| 125A rating SC) |
| 1K522000 |
| Protection cover for all SC/SCB range |
| 1K523000 |

MOUNTING KITS

1L386100 6.3 mm angled Faston 45° for SO
1 L382300 4.8 mm angled Faston 45° for SO
1 LK00100 mounting SC-SO-SF-SM-SU on heatsink or SC-SO on 1LD12020
1 LK00200 mounting SG-SVT-SV9 on heatsink or 1LD00500
1 LK00300 mounting heatsinks on 1LD00400 or SC-SO on 1LD00000
1 LK00700 special kit for high current (okpac range)
THERMAL SEALS RELAY/HEATSINK
5TH15000 \mid t
5TH21000
5TH23000
5TH24000
thermal grease for 30 relays SG/SVT ou 60 relays SC/SO thermal precut film for SC/SO adhesive thermal pads for SC/SO adhesive thermal pads for SA/SU

1LWP2300
1LWP2400

Assembling costs 5TH23000 on SC/SO +5TH23000 Assembling costs 5TH24000 on SA/SU + 5TH24000

MARKING LABELS

1MZ09000 marking labels to be mounted on protection flaps or covers for SA SU

1 LD00400
1 LD00500
1 LD12020

DIN rail adaptator for WF21/07/05 DIN rail adaptator for SG/SVT/SV969300 DIN rail adaptator for SC/SO vertical mounting

MOUNTING+HEATSINK+DIN ADAPTOR OPTION
1LWD1202 mounting of SC/SO sur 1LD12020 + 1LD12020

MOUNTING OPTION ONLY

IF QUANTITY > 10 (screw kit included)
1LW00000 ${ }^{\text {mounting of relays on heatsink }}$
1LWD0000 mounting of heatsink on DIN rail adaptator

MAGNETIC SENSORS

MAGNETIC PROXIMITY SENSORS We are the experts

If you are looking for position, presence, level or speed detection, then we will be able to offer a solution from our range of magnetic sensors. We can even design a specific product for your applications !

At celduc® relais, we are eager to offer the best products for your application, thanks to our 45-year experience in the key technologies that we use in our products:

- Reed switch, a dry contact in a sealed glass bulb providing insulation at the same time : a simple, reliable and low cost solution.
- Electronic cell, based on either magneto-resistance or Hall effect, necessary for higher performance, particularly in high frequency operation."

Contents

PLEASE CONSULT US TO HAVE OUR EXPERTISE

Scope

INDUSTRY

Counting
Cylinder positions
Machine safety
Advertising panel
Actuator position
Liquide level
Speed control

HOME

Burglar alarm
Camera shutter control window position (blinds)
Lifts
Alarms
Big and small household goods
Swimming-pools

AIRCRAFT, SPACE AND ARMY

Level of fuel and petroleum products Level of oil and water

Sensors and actuators for Airbus
Camera shutter control

SPECIFIC APPLICATIONS

ATEX

(explosive atmospheres)

WHAT IS A MAGNETIC PROXIMITY SENSOR?

The sensitive element of the magnetic sensor may be a Hall cell, a magnetoresistive cell or a Reed switch detecting the presence of a magnetic field, in general a permanent magnet. It detects the position of the magnet without contact and transmits an on/off or analogue electric signal, according to the models.

REED SWITCH SENSORS

The REED switch or Flexible Blade Switch is composed of two or three ferromagnetic blades sealed in a glass tube filled with an inert gas, which will come into contact under the influence of a magnetic field.

THERE ARE DIFFERENT CONTACT TYPES

- NO / A Form > Normaly Open
- NF / B Form > Normaly Closed
- BISTABLE NO / L Form
- CHANGE-OVER / C Form

THE MAIN ADVANTAGES ARE:

\rightarrow No power supply necessary,
\rightarrow Operates in harsh environments,
\rightarrow The sensing ranges can be very large (depending on the magnetic sensitivity of the bulb, the power of the magnet as well as the magnetic environment),
\rightarrow Economic solution.

REMINDER : Reed switches and magnetic sensors using reed switches can switch AC or DC current. In our technical datasheets the values given for current and voltage are the maximum values. It means that in DC applications it corresponds to the max. switching current and voltage. In AC applications these valuesare thepeakvalues, toobtainthenominalvalueyou should divide by 1,414 .

ELECTRONIC SENSORS

Their principle of detection is based on the occurrence of a voltage proportional to the magnetic field on the Hall sensors and on a change in resistance also proportional to the magnetic field on the sensors fitted with magnetoresistance. The variations of these signals are processed in the sensor to release an On/Off signal or analogue signal to the user according to the client's needs. These sensors need a power supply.

THE MAIN ADVANTAGES ARE:

\rightarrow Operates at high frequency: $>20 \mathrm{kHz}$.
\rightarrow Not sensitive to shocks and vibrations.
\rightarrow Long lifespan

CONTROL MAGNETS

To control Reed switch or HALL effect cell magnetic sensors, a magnet must be used. Go to page 54 to consult our complete range of coated and uncoated magnets.

CHOICE OF THE SENSOR/MAGNET PAIR MUST BE MADE ACCORDING TO THE TERMS OF USE

\rightarrow Activation distance sought (action and release),
\rightarrow Temperature of use,
\rightarrow Operating mode (Perpendicular or parallel movement?
Nose-to-nose activation?),
\rightarrow Geometry,
\rightarrow Corrosion resistance desired

REMINDER: The guaranteed activation distance depends on the sensitivity of the sensor and of the power of the magnet. As a guideline, in this selection guide, we clarify the guaranteed distance of activation with a given magnet but celduc $®$ remains at your service to offer the best magnet/sensor pair according to your needs.

SPECIAL CUSTOMERS PRODUCTS

MORE THAN 50\% OF THE SENSORS ARE MADE ACCORDING TO CUSTOMER SPECIFICATIONS. HERE ARE A FEW EXAMPLES:

AIRCRAFT INDUSTRY

Serving this industry is proof of reliability. celduc $®^{\circledR}$ relais has developed special sensors to detect the opening/closing of the doors as for example push-buttons used to detect open/ closed doors in Airbus A380 ; sensors to detect tank refueling in Mirage Rafale and Saab Jas 39 fighters; level sensors for AIRBUS humidifiers, ...

NUCLEAR POWER
celduc® relais has designed and made sensors used for nuclear reactor regulation. These sensors are part of the system's highest security level. The qualification phase has therefore been very important in this project and our sensors have been tested in extreme situations. This development of sensors for nuclear reactors demonstrates yet again celduc® relais ability to create specific solutions in fields where reliability is essential.

AGRICULTURE

In agriculture, there are many ways in which our magnetic sensors can be applied. celduc® has developed a magnetic proximity sensor for metal detection. No more need for magnets!

A TEAM OF EXPERTS AT YOUR SERVICE

SENSORS AND CONNECTED OBJECTS

Connect our sensors thanks to our energy efficient mobile communication solutions! Using networks made for the internet of things, our energy efficient wireless connection modules can connect all types of detection needs. Thanks to our professional expertise in the field of magnetic detection and the combination of reed technology and LPWAN networks (low-power wide-area network), our sensors are:
\rightarrow autonomous: up to 10 years of uninterrupted use without changing or recharging the batteries,
\rightarrow connected: directly access the status of your position and level sensor from your mobile or computer and be alerted of any changes,

\rightarrow simple to use: no SIM card or complex parameters, manage your sensors directly from our web platform and connect anywhere in the world with the same model,
\rightarrow economical: much more affordable than traditional mobile networks, LPWAN solutions are particularly well suited to connected sensors and now cover more than 90% of world territory.

SAFETY MAGNETIC SENSORS

A SOLUTION FOR ALL LEVELS OF SAFETY REQUIRED!

3 SAFETY LEVELS

ACCORDING TO STANDARDS EN/ISO 13849-1 / EN/ISO 62061:
The latest safety standards are based on concepts such as the security level (SIL) or the performance level (performance level = PL).

SIL 1
$P L=C$

SIL 1 / 2 / 3 $P L=C / D / E$

ADAPTED

+SAFETY MODULE

These products are designed to protect the operators OF machines when opening doors, casings or covers, by stopping dangerous movements of the machine.

SAFETY MAGNETIC SENSORS

PXS / PSS

The PXS or PSS type products are designed to control the opening of protective devices, machine casings and access doors.

Product reference	PXS79150	PXS59150	PXS10350	PXS70150	PSS79050	PSS79150	PSS59050	PSS59150	PSA60010	PSA60020
Contact status	20	$\mathrm{O}+\mathrm{F}$	$20+1 F$	$20+1 F$	20	20	$\mathrm{O}+\mathrm{F}$	$\mathrm{O}+\mathrm{F}$	10 solid state	10 solid state
Current limiting resistor	10Ω	10Ω	-	10Ω	-	-				
Max. switching power	3VA	500VA	500VA							
Max. switching current	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{gathered} \text { 24- } \\ \text { 440VAC } \end{gathered}$	6-440VAC
Max. switching current	100 mA	100mA	100 mA	100mA	100mA	100 mA	100 mA	100 mA	3A	3A
Cable length	Cable 5m	2 wires 350mm	2 wires 3m							
Activation distance	8 mm	8 mm	8 mm	8 mm	5 mm	5 mm	5 mm	5 mm	12 mm	12 mm
Associated magnet	P2000100	P2000100	P2000100	P2000100	P3000100	P3000100	P3000100	P3000100	P6250000	P6250000
LED option	yes	yes	no	yes	no	yes	no	yes	no	no
Working temperature	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$

C UUS UL PRODUCTS

ASSOCIATED CODED MAGNETS

REED MAGNETIC SENSORS

SCREW POSItION SENSORS

П®『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and connected. (see page 41)

General use screw sensors for industry and household use :
\rightarrow Rabbet sensors
\rightarrow Protection cover presence
\rightarrow Doors opening
\rightarrow Household applicances

Product reference	PAA10060	PAA11202	PAB10020	PLA10100	PLA10160	PLA11208	PLA12430
Contact status	NO	NO	NC	NO	NO	NO	NO
Connection type	2 wires / FASTON	2 wires	$\begin{aligned} & 2 \text { wires }+\mathrm{HE} 14 \\ & \text { connector } \end{aligned}$	cable	2 wires	cable	cable
Cable length	680mm	275 mm	160 mm	10m	360mm	800mm	3 m
Max. switching power	12VA	12VA	3VA	12VA	12VA	12VA	12VA
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 200VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 250VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 250VDC } \end{aligned}$
Max. switching current	0.4A	0.4A	0.25A	0.5A	0.4A	0.4A	0.4A
Activation distance	15 mm with P6250000	15 mm with P6250000	18mm with P6250000	10 mm with P6250000	15 mm with P6250000	16 mm with P6250000	12 mm with P6250000
Working temperature	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$
Dimensions in mm	$23 \times 14 \times 6$	$23 \times 14 \times 6$	$23 \times 14 \times 6$	$32 \times 15 \times 6.8$			
Fixing screws distance	14mm	14mm	14mm	17,5mm	17,5mm	17,5mm	17,5mm

Product reference	PLA13701	PLA13730	PLA13750	PLA43403	PLB10060	PLB16701	PLC10040	PLC13701
Contact status	NO	NO	NO	NO	NC	NC	Change-over	Change-over
Connection type	cable	3 wires						
Cable length	100 mm	3 m	5 m	300 mm	3 m	100 mm	1.5 m	100 mm
Max. switching power	12VA	12VA	12VA	100VA	12VA	12VA	NF: 3VA NO : 8VA	$\begin{aligned} & \text { NF : 3VA } \\ & \text { NO : 8VA } \end{aligned}$
Max. switching voltage	110VAC 200VDC	110VAC 200VDC	110VAC 200VDC	230VAC 350VDC	110VAC 200VDC	110VAC 200VDC	$\begin{aligned} & \text { 48VAC } \\ & 100 \mathrm{VDC} \end{aligned}$	48VAC 100VDC
Max. switching current	0.4A	0.4A	0.4A	1A	0.4A	0.4A	0.25A	0.25A
Activation distance	$\begin{aligned} & 10 \mathrm{~mm} \text { with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm} \text { with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm} \text { with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & 12 \mathrm{~mm} \text { with } \\ & \text { P6250000 } \end{aligned}$	4<d<12mm (with gel. Magnet)	4 mm (with gel. Magnet)	14 mm with P6250000	$\begin{aligned} & \text { 10mm with } \\ & \text { P6250000 } \end{aligned}$
Working temperature	$\begin{gathered} -40 \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40 \mathrm{to} \\ +100^{\circ} \mathrm{C} \end{gathered}$
Dimensions in mm	32×15x6.8	32×15x6.8	$32 \times 15 \times 6.8$					
Fixing screws distance	17.5 mm							

REED MAGNETIC SENSORS

1○『 Solutions Connect our Reed sensors to a communication system so that they are autonomous and connected. (see page 41)									
Product reference	PB195T00	PB367G00	PB390G00	PBA13725	PBA13780	PSL40010	PS2A0020	PSC41000	PSC42000
Contact status	NO	NC	NO	NO	NO	NO	2NO	Change-over	Change-over
Connection type	2 wires	2 wires	2 wires	Cable	Cable	2 wires	Cable	Cable	Cable
Cable length	80 mm	80mm	80mm	2,5m	8 m	550 mm	2 m	400mm	2,5m
Max. switching power	50VA	16VA	16VA	12VA	12VA	10VA	100VA	100VA	100VA
Max. switching voltage	250VAC	$\begin{aligned} & \text { 110VAC } \\ & \text { 250VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 250VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & 250 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 250VDC } \end{aligned}$	$\begin{aligned} & \text { 230VAC } \\ & 350 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 230VAC } \\ & 350 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 230VAC } \\ & \text { 350VDC } \end{aligned}$
Max. switching current	1A	0,5A	0,5A	0,4A	0,4A	0,5A	1A	3A	3A
Activation distance	7mm with P4160000	4mm with P4159000	$\begin{gathered} 13 \mathrm{~mm} \\ \text { with } \\ \mathrm{P} 4160000 \end{gathered}$	13 mm with P4160000	13 mm with P4160000	12 mm with P6250000	15 mm with P6250000	8mm with UR608000	8 mm with UR608000
Working temperature	-40 to $+100^{\circ} \mathrm{C}$					-40 to $85^{\circ} \mathrm{C}$		-25 to $+85^{\circ} \mathrm{C}$	
Dimensions in mm	$86 \times 8.5 \times 12.5$	$51 \times 8.5 \times 11.5$				$51 \times 16 \times 7$			
Fixing screws distance	75 mm	40 mm	40 mm	40 mm	40 mm	16 mm	16 mm	16 mm	16 mm

Screw sensors with safety loop (Alarms)

UL approved sensors

PLA10101U	PLA12435U	PLC12425U
NO	NO	Change-over
2 wires	2 wires	Cable
400 mm	350 mm	106 mm
10VA	10VA	NF: 3VA NO: 8VA
48VAC 100VDC	48VAC 100VDC	48VAC 100VDC
0.5A	0.4 A	0.5A
10mm with P6250000	$\begin{aligned} & 12 \mathrm{~mm} \text { with } \\ & \text { P6250000 } \end{aligned}$	10 mm with P6250000
-40 to $+85^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-25 to $+85^{\circ} \mathrm{C}$
$32 \times 15 \times 6.8$		
17.5 mm		

REED MAGNETIC SENSORS

TUBULAR POSITION SENSORS

П®『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and connected. (see page 41)

General use tubular sensors for industry and household use :
\rightarrow Rabbet sensors
\rightarrow Doors opening
\rightarrow Protection cover presence
\rightarrow Household appliances. \qquad

Product reference	PTA10440	PTA11235	PTA12401	PTA13730	PTA50010	PTB13702	PTC13730
Contact status	NO	NO	NO	NO	NO	NC	Change-over
Max. switching power	12VA	12VA	12VA	12VA	12VA	3VA	$\begin{aligned} & \mathrm{NC}: 3 \mathrm{VA} \\ & \mathrm{NO}: 8 \mathrm{VA} \end{aligned}$
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$
Max. switching current	0.4A	0.4A	0.4A	0.4A	0.4A	0.25A	0.25A
Connection type	2 wires 500mm	Cable 3,5m	2 wires 100 mm	2 wires 3m	2 wires 100mm	2 wires 200mm	Cable 3m
Activation distance with P6250000	7 mm	15mm	14mm	10mm	18mm	14mm	7 mm
Working temperature	-40 to $+85^{\circ} \mathrm{C}$						
Dimensions in mm	$\begin{aligned} & \varnothing 6 \times 30 \\ & \text { Plastic } \end{aligned}$	Ø6x30 Plastic	$\begin{aligned} & \varnothing 6 \times 30 \\ & \text { Plastic } \end{aligned}$	$\begin{aligned} & \varnothing 6 \times 30 \\ & \text { Plastic } \end{aligned}$	Ø6x25,2 Plastic	$\begin{aligned} & \varnothing 6 \times 30 \\ & \text { Plastic } \end{aligned}$	$\begin{aligned} & \varnothing 6 \times 30 \\ & \text { Plastic } \end{aligned}$

Product reference	PTA10490	PTPA0030	PTPA0100	PTPA0110	PTPA0230	PTPB0011
Contact status	NO	1NO	1 NO	1NO	1NO	1NC
Max. switching power	10VA	12VA	12VA	12VA	12VA	12VA
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$
Max switching current	0.4A	0.5A	0.5A	0.5A	0.5A	0.5A
Connection type	2 wires 800mm	2 wires 3m	Connectors	Connectors	2 wires 3m	2 wires $80 \mathrm{~mm}+$ FASTON
Activation distance	16 mm with P6250000	12mm (magnet provided)	12 mm (magnet provided)	consult us	30mm (magnet provided)	10mm (magnet provided)
Working temperature	-40 to $+120^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$				
Dimensions in mm	Ø6x41 Raw brass	Ø11x28 Plastic	Ø11x28 Plastic	Ø11x28 Plastic	Ø23x27 Plastic	Ø23x28 Plastic

REED MAGNETIC SENSORS

PTI M8 housing

Typical applications:
\rightarrow Speed sensors,
\rightarrow Presence, position, clearance sensors.
\qquad

Product reference	PT140003	PT140020	PT140030	PTI50020	PTIC0030	PTI10122	PTI60020	PTI70020
Contact status	1NO / A form	1NO / A form	1NO / A form	1NC / B form	Change-over / C form	1NO / A form	1NO / A form	1NC / B form
Max. switching power	12VA	12VA	12VA	5W	5W	10VA	12VA	5W
Max. switching voltage	$\begin{aligned} & \text { 110VAC } \\ & \text { 200VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 200VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 200VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 175VDC } \end{aligned}$	175VDC	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 200VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 175VDC } \end{aligned}$
Max. switching current	0.5A	0.5A	0.5A	0.25A	0.25A	0.10A	0.5A	0.25A
Connection type	Cable 30cm	Cable 2m	Cable 3m	Cable 2m	Cable 3m	Cable 22m	Cable 2m	Cable 2m
Activation distance	12 mm with magnet PT505000	12 mm with magnet PT505000	12 mm with magnet PT505000	7 mm with magnet PT505000	15 mm with magnet UR801000	12 mm with magnet PT505000	12 mm with magnet UR801000	7 mm with magnet UR801000
Working temperature	-40 to $+85^{\circ} \mathrm{C}$							
Dimensions in mm	$\begin{gathered} \text { M8x1 - Lg } 31 \\ \text { Plastic } \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \times 1-\operatorname{Lg} 31 \\ \text { Plastic } \end{gathered}$	$\begin{gathered} \text { M8x1-Lg } 31 \\ \text { Plastic } \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \times 1-\operatorname{Lg} 31 \\ \text { Plastic } \end{gathered}$	$\begin{gathered} \text { M8x1 - Lg } 31 \\ \text { Plastic } \end{gathered}$	M8x1-Lg 40 Stainless Steel	$\text { M8x1-Lg } 40$ Stainless Steel	M8x1-Lg 40 Stainless Steel

PTA / PDC M10 housing

Typical applications:
\rightarrow Speed sensors,
\rightarrow Presence, position, clearance sensors.
\rightarrow Sensors with M12 housing page 48

SENSORS FOR LIFTS

AND OTHER INDUSTRIAL APPLICATIONS

PC - M12 housing

Typical applications:
\rightarrow Lifts : sensors with 2 or 3 normally open contacts are used to detect the position of the cabin as well as automatic level reset according to the weight.
\rightarrow Position / clearance sensors.

Product reference	CA22330	PCA36720	PCC1 2320	PCC26720	PCLA3030	PC2A2330	PC3A2330
Contact status	1NO / A form	1NO / A form	Change-over / C form	Change-over / C form	Bistable / L form	2NO / A form	3NO / A form
Max. switching power	70VA	100VA	3VA	60VA	100VA	70VA	70VA
Max. switching voltage	300VAC	250VAC	100VAC	400VAC	250VAC	300VAC	300VAC
Max. switching current	0.5A	3A	0.25A	1A	3A	0.5A	0.5A
Connection type	Cable 3m	Cable 2m	Cable 2m	Cable 2m	Cable 3m	Cable 3m	Cable 3m
Activation distance	20 mm with UR144361	15 mm with UR144361	25 mm with UR144361	18 mm with UR144361	30 mm with UP081508	20 mm with UR144361	20 mm with UR144361
Working temperature	-25 to $+75^{\circ} \mathrm{C}$	-40 to $+75^{\circ} \mathrm{C}$	-40 to $+75^{\circ} \mathrm{C}$				
Dimensions mm	M12x1 L 80 Plastic housing						

Sensors with M12x1 L50 housing on request

SENSORS FOR LIFTS

\rightarrow Detection of the lift position
\rightarrow Doors opening control
celduc® relais offers a wide range of magnetic sensors for elevators with reed switches or Electronic" magnetic sensors using an Hall effect cell or magneto resistance.
The magnetic field created by the permanent magnet, activates the sensitive part (the reed switch or the Hall effect cell or the magneto resistance). It is important to combine the magnet and sensor with consideration to the correct operating conditions (switching distance, presence of ferro-magnetic parts or non ferro-magnetic parts...).
celduc® relais is at your disposal to help you define the right products.
Advantages: - insensitive to the ambient working conditions (heat or cold air, humidity, dust...)

- high reliability
- large detection distance
- good reliability to shocks and vibrations
- IP67

REED MAGNETIC SENSORS / HALL EFFECT

Sensors for LAYOUT ON PCB

Reed switch proximity sensors in plastic housing, for PCB mounting with no risk of damage.

Product reference	PHA01200	PHA11200	PHC13700	
Contact status	NO	NO	Change-over	
Max. switching power	12VA	12VA	NC : 3VA / NO : 8VA	
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	
Max. switching current	0.4 A	0.4 A	0.4 A	
Activation distance with U6250000	18mm	17 mm	11 mm	\rightarrow
Working temperature	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	
Dimensions in mm	$23 \times 4.2 \times 3.6$	$23 \times 4.2 \times 3.6$	$23 \times 4.2 \times 3.6$	Position

Hall effect SENSORS

celduc® relais offers two ranges of electronical sensors :
\rightarrow Hall effect sensors
\rightarrow Gear tooth sensors. \qquad

Product reference	PTE1 1320	PTE11321	PTE21320	PTE21321	PTE31320	PTE31321	PTE41320	PTE41321
Contact status	Hall effect PNP	Hall effect NPN	$\begin{gathered} \text { Gear } \\ \text { toothPNP } \end{gathered}$	$\begin{gathered} \text { Gear } \\ \text { toothNPN } \end{gathered}$	Hall effect PNP	Hall effect NPN	Gear tooth PNP	Gear tooth NPN
Cable length	cable 2m	cable 2 m	cable 2m	cable 2m	cable 2 m	cable 2 m	cable 2m	cable 2m
Activation distance	19 mm	19 mm	1.5 mm	1.5 mm	17 mm	17 mm	1.5 mm	1.5 mm
Max. switching voltage	6-48VAC							
Max. switching current	0.4A							
Working temperature	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \end{gathered}$
Dimensions in mm	Plastic housing M12x33				Raw brass housing M12x33			
Associated coded magnet	PT810000	PT810000			PT810000	PT810000		

APPLICATIONS
\rightarrow Counting
\rightarrow Industry
\rightarrow Lift
\rightarrow Speed sensors
\rightarrow Household electronical appliances
\rightarrow Tractors...

Direct detection

REED MAGNETIC SENSORS

LeVEL \& FLOW SENSORS

- 『『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and connected. (see page 41)
celduc relais $®$ offers a large range of standard or specific level and flow sensors using Reed switches.
Our sensors are available in plastic, brass or stainless steel housing, making it possible to use them with various chemical substances and/or operating temperatures. With some sensors, it is possible to invert function by reversing the float or using the sensor upside down.
Please see the data sheets for more details. For specific applications (e.g. potentiometric scale, special level sensors) do not hesitate to contact us : products can be developed on request. \qquad
(1) Possible to invert the functions by reversing the float
(2) Available in ATEX version (see page 53)

(2) Available in AT			X version (see page 53)					
			PTF01070	PTFA1015	PTFA1103 (1) PTFA1104 (1)	PTFA5001 (1)	PTFA1210	PTFA2115(1)(2) PTFA2115R
Mounting			Vertically	Vertically	Vertically	Vertically	Vertically High and low level	Vertically
	Contac (float	status down)	1NO	1 NO	1NC (PTFA1103) 1NO (PTFA1104)	1NC	$1 \mathrm{NO}+\mathrm{NC}$	1 NO
	Connec	on type	2 wires 70mm	2 wires 1.5 m	2 wires 300mm	Cable 2m	Cable (3 wires) 300 mm	2 wires 1.5 m
	Material	Housing	Polyamide 6/6 resin with glass fiber content	Polyamide 6/6 resin with glass fiber content	Polypropylene	Polypropylene	Polyamide	Stainless steel
		Float	Polypropylene	Polypropylene			Polyurethane	
	Liquid compatibility		Water	Water	1	1	2	3
	Float travel		10mm	17mm	9 mm	10mm	48.5 mm	8mm
	Max. switching power		10VA	10VA	10VA	50VA	Top : 10VA Bottom : 3VA	50VA
	Max. switching voltage		$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 230VAC } \\ & \text { 350VDC } \end{aligned}$	$\begin{aligned} & \text { 230VAC } \\ & \text { 350VDC } \end{aligned}$	Top : 200Vdc Bottom : 100Vdc	$\begin{aligned} & \text { 230VAC } \\ & \text { 350VDC } \end{aligned}$
	Max. switching current		0.5A	0.5A	0.5A	0.5A	Top : 0.5A Bottom: 0.25A	0.5A
	Density mini		0.8	0.75	0.7	0.9	0.6	0.75
	Working temperature		$0 / 70^{\circ} \mathrm{C}$	$0 / 70^{\circ} \mathrm{C}$	$-10 / 80^{\circ} \mathrm{C}$	$-10 / 80^{\circ} \mathrm{C}$	$-10 / 85^{\circ} \mathrm{C}$	$0 / 100^{\circ} \mathrm{C}$
	Thread		M8 $\times 1.25$	$\begin{gathered} 3 / 8 " \text { threading UNC } \\ 1.588 \mathrm{~mm} \\ (16 \text { per inch }) \\ \hline \end{gathered}$	1/8" GAS (28 per inch)	M8 $\times 1.25$	3/8" threading UNC 1.588 mm (16 per inch)	M10 x 1

LIQUIDS COMPATIBILITY

\rightarrow Compatible with acid : acetic, citric, formic, lactic, nitric diluted, phosphoric, sulphuric diluted ; soda ; alcohols : ethanol, methanol, propanol ; glycol ; mineral oil; water
\rightarrow Not compatible with the following solvents : chloroforme, methylene chloride, trichloroethylene, toluene ; hard acids.
\rightarrow Compatible with fuels, engine oil, kerosene, lubricaring oil, mineral oil, vegetal oil,
\rightarrow Not compatible with almost all acids, methylene chloride
\rightarrow Acceptable resistance to water.
$\rightarrow>$ Compatible with almost all the liquids except hard acids.

REED MAGNETIC SENSORS

A float fitted with one or more magnets moves with the liquid and actuates, due to its magnetic field, a hermetically sealed reed contact located in the body of the float.

ADVANTAGES

 The below advantages allow a safety use, repetitiveness, precision and minimum maintenance.\rightarrow One moving part.
\rightarrow The Reed contact is actuated by a magnetic field only: no contact so no wear.
\rightarrow The Reed contact is completely isolated from the liquid so perfectly waterproof.

(2) Available in ATEX version (see page 53).

APPLICATIONS

HEATING (air-conditioning, heaters, humidifiers)
\rightarrow To detect the water level in the tank.
DOMESTIC EQUIPMENT (electronic flush, solar systems)
\rightarrow To detect the water level.
FOOD INDUSTRY (coffee machines, vending machines) \rightarrow Check the level of water left in the tank.

MEDICAL EQUIPMENT (sterilising equipment for medical instruments)
\rightarrow Check level of water for steam or liquid detergent level.
WATER TREATMENT (water purifying, desalinating)
\rightarrow The sensors enable the reserve water level to be established.
SWIMMING POOLS (water treatment, water heating)
\rightarrow Water level and flow.
AUTOMOBILE (radiator liquids level, windscreen washer, engine oil level, brake oil level)

\rightarrow Detection of liquids levels.
VARIOUS INDUSTRIES (photo lab equipment, scrubber machines, fuel dispensing systems).
relais

REED MAGNETIC SENSORS

Sensors for WINDOW FRAMES

]®『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and connected. (see page 41)

This new range has been developed to detect position of the window : open or closed (supervising of openings). Typical applications are alarm, heating, air-conditioning systems.
Main advantages are :
\rightarrow Save time for mounting and wiring : pluggable connector, product to be clipped (no fixing screws)
\rightarrow Normally open (NO), normally closed (NC), change-over contact, safety current loop
\rightarrow Water-proof contact.

2
Connecting

3
Positioning

Product
reference \quad PWA01501

| Magnet |
| :--- | :--- |
| PW520000 |
| Po be clipped |\quad| Magnet |
| :--- |\quad| UR124540 |
| :--- |
| to be screwed |\quad| Magnet |
| :--- |
| UZ189538 |
| to be glued |

ATEX SENSORS

celduc® relais is notified as manufacturer of ATEX products :
INERIS 04ATEXQ406 and offers a wide range of ATEX sensors.
celduc® relais has EC-type examination certificate Nr. INERIS 04ATEX0105.
Group II : Open-air industry (other than mines) with possible inflammable dust.
Marking example : for part number PL.1...Ex (for other part numbers, please refer to our technical data-sheet)

CE0080 II 2 GD	Ex mb IIC T6 Gb Ex tb IIIC IP67 T85
Type Db	
	1 for zone 0 (continuous risk) 2 for zone 1 (intermittent risk)

I®『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and connected. (see page 41)
II 1 GD
Ex ia IIB T6 Ga Ex ia IIIB $\mathrm{T} 85^{\circ} \mathrm{C}$ Da

Gaz: G or Dust : D
Protection " m " for zone 1 and " i " for zone 0
Temperature class : T6 $\left(85^{\circ} \mathrm{C}\right) \mathrm{T} 4\left(135^{\circ} \mathrm{C}\right)$ or $\mathrm{T} 3\left(200^{\circ} \mathrm{C}\right)$
Cables length 5 m or 10 m .

[^2]
CONTROL MAGNETS

Range of standard permanent magnets used as actuators for our magnetic sensors. Our range of magnetic sensors with reed switches or "Electronic" magnetic sensors using a Hall effect cell should be actuated with the correct magnet. celduc ® relais offers 3 families of magnets to be chosen according to the application (working temperature, geometry, resistance to corrosion).

| Material | Max. operating
 temperature | Derating according to
 temperature (recoverable) | Resistance
 to corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alnico | $500^{\circ} \mathrm{C}$ | very low
 $\left(-0.025 \%\right.$ per $\left.{ }^{\circ} \mathrm{C}\right)$ | Good resistance | generally supplied in bars which should
 have a length of minimum
 x4 the diameter |
| Ferrite | $250^{\circ} \mathrm{C}$ | high (-0.20\% per $\left.{ }^{\circ} \mathrm{C}\right)$ | Very good resistance | generally supplied in parallelepiped |
| block, disc or ring | | | | |

celduc® relais is at your disposal to help you define the correct magnet/sensor arrangement according to your needs / operating conditions.

COATED MAGNETS

BARE MAGNETS

Product reference	For sensors	Bare magnet dimensions in mm	Dimensions in mm	$\begin{gathered} \text { Fig } \\ \mathrm{n}^{\circ} \end{gathered}$	Product reference	Material	Dimensions in mm	$\begin{gathered} \mathrm{Fig} \\ \mathrm{n}^{\circ} \end{gathered}$
P0540000	PSC	Ø 5×20	$51 \times 16 \times 7$	1	U315P003	Alnico5	Ø 3x15	1
					U4200000	Alnico5	$\varnothing 4 \times 20$	1
PA320000	PA	$\varnothing 3 \times 20$	$23 \times 15 \times 6$	2	U6250000	Alnico5	Ø 6x25	1
					U8300000	Alnico5	$\varnothing 8 \times 30$	1
P2000100	PXS	$\varnothing 10 \times 10$	51x16x7	3	UB105000	Alnico5	Ø 10x50	1
P3000100	PSS	$\varnothing 3 \times 4$	$51 \times 16 \times 7$	1				
					UF207760	Ferrite	20,5x7.7x6	2
P3150000	PA, PH, PL, PT	$\varnothing 3 \times 15$	$32 \times 15 \times 6.8$	4	UF221105	Ferrite	$\varnothing 22 \times 11 \times 5$	3
P4200000	PA, PH, PL, PT	$\varnothing 4 \times 20$	$32 \times 15 \times 6.8$	4	UF341605	Ferrite	$\varnothing 34 \times 16 \times 5$	3
P6250000	PA, PH, PL, PT	$\varnothing 6 \times 25$	$32 \times 15 \times 6.8$	4	UZ189538	Ferrite	18×9.5×3.8	2
P4159000	PB or PLA	Ø 3x15	$51.8 \times 8.5 \times 11.5$	5	UP051508	Plastoferrite	$50 \times 15 \times 8$	4
P4160000	PB or PLA	Ø 5 $\times 25$	$51.8 \times 8.5 \times 11.5$	5	UP071508	Plastoferrite	$70 \times 15 \times 8$	4
					UP102008	Plastoferrite	$100 \times 20 \times 8$	4
PT505000	PTI5 plastic	$\varnothing 5 \times 5$	M8x1 Lg 31	6	UP301508	Plastoferrite	$300 \times 15 \times 8$	4
					UP302008	Plastoferrite	$300 \times 20 \times 8$	4
PT810000	PTE	$\varnothing 8 \times 10$	M12x1 Lg 31.2	7				
					UR101000	NdFeBo	Ø 10x10	6
PW520000	PWA, PWB, PWC	$\varnothing 5 \times 20$	$47.7 \times 9.7 \times 9.1$	8	UR102540	NdFeBo	$\varnothing 10 \times 4 \times 2.5$	5
					UR124540	NdFeBo	$\varnothing 12 \times 4 \times 4.5$	5
					UR144361	NdFeBo	$\varnothing 14 \times 6 \times 4.3$	5
					UR120500	NdFeBo	$\varnothing 12 \times 5$	6
					UR122000	NdFeBo	Ø 12x20	6
					UR304000	NdFeBo	Ø 3×4	6
					UR315000	NdFeBo	$\varnothing 3 \times 15$	6
		7			UR503000	NdFeBo	Ø 5x3	6
					UR604010	NdFeBo	¢ 6x4	6
					UR801000	NdFeBo	$\varnothing 8 \times 10$	6

Reed Switches \& Mercury Tilt Switches

Detecting a clearance, a position, a level in extrem environnements without mechanical link between the moving parts and without maintenance, such is the daily challenge of the Reed contact submitted to a magnetic field in industrial sectors as various as money, space, control, telecom...

Reed Relays in DIP enclosure

The most popular and the most industrial of the range. It offers all contact combinations. It is designed to switch inputs of telephony levels or PLC, signals from sensors or safety components.

Internal scheme (top view)	Product reference	Contact status	Characteristics of the switch			Characteristics of the coil		Specifications	Dimensions in mm
			Max. switching voltage	Max. switching current	Max. switching power	Nominal voltage	R. coil at $20^{\circ} \mathrm{C}$		
14.3	D31A3100	1NO	100VDC	0.5A	10VA	5VDC	500Ω	-	$19.1 \times 6.6 \times 6.4$
\square	D31A3110		100VDC	0.5A	10VA	5VDC	500Ω	diode	
$\square \Gamma$	D31A5100		100VDC	0.5A	10VA	12VDC	$1 \mathrm{k} \Omega$	-	
${ }^{2 .}$	D31A7100		100VDC	0,5A	10VA	24VDC	2150Ω	-	
33	D31A7110		100VDC	0.5A	10VA	24VDC	2150Ω	diode	
\cdots	D31B3100	1NC	100VDC	0.5A	10VA	5VDC	500Ω	diode	$19.1 \times 6.6 \times 6.4$
5	D31B5100		100VDC	0.5A	10VA	12VDC	500Ω	diode	
1.2. 6. ${ }^{\text {\% }}$	D31C2100	Changeover	100VDC	0.25A	3VA	5VDC	200Ω	-	$19.1 \times 6.6 \times 6.4$
	D31C2110		100VDC	0.25A	3VA	5VDC	200Ω	diode	
	D31C5100		100VDC	0.25A	3VA	12VDC	500Ω	-	
	D31C5110		100VDC	0.25A	3VA	12VDC	500Ω	diode	
	D31C7100		100VDC	0.25A	3VA	24VDC	2150Ω	-	
	D31C7110		100VDC	0.25A	3VA	24VDC	2150Ω	diode	
3 B	D32A3100	2 NO	100VDC	0.5A	10VA	5VDC	200Ω	-	$19.1 \times 6.6 \times 6.4$
	D32A3110		100VDC	0.5A	10VA	5VDC	200Ω	diode	
	D32A5100		100VDC	0.5A	10VA	12VDC	500Ω	-	
	D32A7100A		100VDC	0.5A	10VA	24VDC	2150Ω	-	
- 1	D71A2100	1 NO	100VDC	0.5A	10VA	5VDC	380Ω	-	$19.1 \times 6.6 \times 5.5$
	D71A2110			0.5A	10VA	5VDC	380Ω	diode	
7 7^{6+7}	D71A5100		100VDC	0.5A	10VA	12VDC	530Ω	-	

Reed Relays in SIP enclosure

Relays for high density component circuits : alarms, testers, industrial control.

Internal scheme

$\frac{\text { (top view) }}{\text { Coses, }}$ reference $\begin{aligned} & \text { Contact } \\ & \text { status }\end{aligned}$ D41A5100L 1 NO
\(\left.$$
\begin{array}{l}\text { Characteristics of the switch } \\
\begin{array}{|c|c||c|}\text { Max. swit- } \\
\text { ching voltage } \\
\text { 100VDC }\end{array} \\
\begin{array}{c}\text { Max. swit- } \\
\text { ching current }\end{array} \\
\begin{array}{c}\text { Max. switching } \\
\text { power }\end{array}
$$

10.5A\end{array}\right]\)| 10VA |
| :--- |$|$

Characteristics of the coil

Nominal	R. coil	Specifications	Dimensions in voltage
at $20^{\circ} \mathrm{C}$	mm		

REED RELAYS \& SWITCHES

The products on this page do not reflect the full expanse of our range and possibilities. Please do not hesitate to contact us if you find that the product does not meet your needs.

High voltage relay

Dielectric strength between contacts > 10KVDC and 14VDC between coil and contact.

Product reference	Contact status	Max. switching voltage	Max. switching current	Max. switching power	Nominal voltage	R. coil at $20^{\circ} \mathrm{C}$	Specifications	Dimensions in mm
R1329L00	1NO	7500VDC	0.2A	50VA	12VDC	300Ω		$65 \times 15.2 \times 16.9$
R1329L87		7500VDC	0.2A	50VA	12VDC	300Ω	without fixing screw	
R1343L00		7500VDC	0.2A	50VA	24VDC	1200Ω		
R1343L13		5000VDC	0.2A	50VA	24VDC	1200Ω		

Reed F \& R Relay range

Relays with ferro-magnetic shield in for telecom type applications. \qquad

Characteristics of the coil

Internal scheme (top view)			Characteristics of the switch			Characteristics of the coil		Specifications	Dimensions in mm
	Product reference	Contact status	Max. switching voltage	Max. switching current	Max. switching power	Nominal voltage	R. coil at $20^{\circ} \mathrm{C}$		
-3	F51A5100		250VDC	0.4A	14VA	12VDC	2145Ω	comes in coatedversion réf. F81Ax100	$30 \times 9.5 \times 10$
	F81A5500		500VDC	1A	50VA	12VDC	$1000 \mathrm{k} \Omega$	Position	$30 \times 9.5 \times 10$
	F81A7500		500VDC	1A	50VA	24VDC	2300Ω	vertically	$30 \times 9.5 \times 10$
	F61A2100		250VDC	0.4A	14VA	5VDC	345Ω	Coil/contact	$30 \times 9.5 \times 11$
	F61A7100		250VDC	0.4 A	14VA	24VDC	7845Ω	insulation 4KV	30x9.5x11
	F72C2500	2 mercury	500VDC	1A	50VA	5VDC	75Ω		
	F72C5500	wetted change-	500VDC	1A	50VA	12VDC	350Ω	vertically	$30 \times 16.5 \times 11$
	F72C7500	over switch	500VDC	1A	50VA	24VDC	1350Ω		

Characteristics of the switch			Characteristics of the coil		Specifications	Dimensions in mm
Max. switching voltage	Max. switching current	Max. switching power	Nominal voltage	$\begin{aligned} & \text { R. coil at } \\ & 20^{\circ} \mathrm{C} \end{aligned}$		
100VDC	0.4A	12VA	4VDC	250Ω		
100VDC	0.4 A	12VA	5VDC	450Ω	-	$23 \times 7.5 \times 6.7$
100VDC	0.4 A	12VA	12VDC	1600Ω		
100VDC	0.4A	12VA	4VDC	500Ω	DIL layout	$20.2 \times 10.1 \times 7.2$
100VDC	0.25A	3VA	6VDC	150Ω		
100VDC	0.25A	3VA	12VDC	500Ω	-	$23 \times 7.5 \times 6.7$
100VDC	0.25A	3VA	24VDC	1800Ω		
250Veff	3A	100VA	6VDC	250Ω		
250Veff	3A	100VA	12VDC	$1000 \mathrm{k} \Omega$	step 5,08	$65 \times 15,5 \times 16$
250Veff	3A	100VA	24VDC	$4 \mathrm{k} \Omega$		
100VDC	0.4 A	12VA	4VDC	200Ω	DIL	$20.2 \times 10.1 \times 7$.
100VDC	0.4 A	12VA	5VDC	200Ω	layout	$20.2 \times 10.1 \times 7.2$
500VDC	2 A	100VA	5VDC	335Ω		
500VDC	2 A	100VA	24VDC	2650Ω	position vertically	$40.8 \times 14.2 \times 10.4$
500VDC	2 A	100VA	5VDC	125Ω	position vertically possible C.O.T	$40.8 \times 19.8 \times 10.4$

CATALOGUES AND LEAFLETS AVAILABLE ON REQUEST

CATALOGUES AND GENERAL INFORMATION LEAFLETS

Product Guide

Single-phase solid state relays \& contactors celpac range

- 晴

Three-phase solid state relays \& contactors cel3cap \& sightpac ranges
|l|
輽

APPLICATIONS BROCHURES

- RAILWAY
- PLASTICS PROCESSES
- PACKAGING
- FOOD
- MEDICAL

WANT TO KNOW MORE?

All our technical datasheets are available on our website:
www.e-catalogue.celduc-relais.com

Celduc ${ }^{\circledR}$ relais is represented in more than 60 countries

AFRICA

South Africa
Algeria
Egypt
Morocco

ASIA

China
South Korea
Hong Kong India Indonesia
Iran
Israel
Japan
Malaysia
Philippines
Singapore
Taiwan
Thailand
Turkey
Vietnam

OCEANIA
Australia New Zealand

afạ
 $\frac{\text { Qualite }}{\text { anvon carmincaron }}$

Sales department France : Tél. $+33(0) 477539020$
Sales department for Asia : Tél. +33(0)4 77539019
Sales department for Europe : Tél. +33 (0)4 77539021
Sales deparment for America: Tél. +33 (0)4 77539019
Purchasing department : Têl. +33 (0)4 77539022
$+33(0) 477539028$
Administrative and financial department: Tél. +33 (0)4 77539005

> 5 rue Ampère - BP 30004 - 42290 Sorbiers - France
> Fax : $+33(0) 477538551$

[^0]: These products should be mounted on heatsinks in order to reach nominal current.

[^1]: These products should be mounted on heatsinks in order to reach nominal current.

[^2]: *See technical data-sheets

